[1] J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams,” Progressive Materials Science, vol. 200, no. 46, pp. 559-632, (2001). https://doi.org/10.1016/S0079-6425(00)00002-5
[2] B.H. Smith, S. Szyniszewski, J.F. Hajjar, B.W. Schafer and S.R. Arwade, “Steel foam for structures: A review of applications, manufacturing and material properties” Journal of Constructional Steel Research, vol. 71, pp. 1-10, (2012). https://doi.org/10.1016/j.jcsr.2011.10.028
[3] H. P. Degischer, B. Kriszt, Handbook of Cellular Metals Production, Processing and Applications, Wiley-VCH/Verlag GmbH, (2002).
[4] M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson and H.N.G. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, Massachusetts, (2000).
[5] A. Pandey, R. Dubey, H. Jain, A. Abhas, R. Kumar, G.K. Gupta, S. Siram, V. Chilla and D.P. Mondal, “Effect of cell size on the microarchitectural and physicomechanical response in open-cell Al foam made through template method,” Materials Chemistry and Physics, vol. 296, pp. 127341, (2023).
https://doi.org/10.1016/j.matchemphys.2023.127341
[6] Z. Xu, D. Shen, K. Wang, P. He, J. Zhang, H. Zhang, P. Cao, S. Huang, J. Peng, Q. Shen and C. Wang and L. Zhang, “Synthesis of a novel Al foam with a periodic architecture by introducing hollow Al tubes and Al/Mg powders” Journal of Materials Science and Technology, vol. 148, pp. 105-115, (2023).
https://doi.org/10.1016/j.jmst.2022.10.037
[7] W. Fu, Y. Du, J. Jing, C. Fu and M. Zhou, “Highly selective nitrate reduction to ammonia on CoO/Cu foam via constructing interfacial electric field to tune adsorption of reactants,” Applied Catalysis B: Environmental, vol. 324, pp.122201, (2023). https://doi.org/10.1016/j.apcatb.2022.122201
[8] P. Jenei, C. Kadar, A. Szabo, S. M. Hung, C. J. Kuo, H. Choe and J. Gubicza, “Mechanical behavior of freeze-cast Ti foams with varied porosity,” Materials Science and Engineering: A, vol. 855, pp. 143911, (2022).
https://doi.org/10.1016/j.msea.2022.143911
[9] Z. Feng, L. Zhang, W. Chen, Z. Peng and Y. Li, “A strategy for supportless sensors: Fluorine doped TiO2 nanosheets directly grown onto Ti foam enabling highly sensitive detection toward acetone,” Sensors and Actuators B: Chemical, vol. 322, pp. 128633, (2020). https://doi.org/10.1016/j.snb.2020.128633
[10] H. Sazegaran, S. M. Moosavi Nezhad, “Cell morphology, porosity, microstructure and mechanical properties of porous Fe-C-P alloys,” International Journal of Minerals, Metallurgy and Materials, vol. 28, pp. 257-265, (2021).
https://doi.org/10.1007/s12613-020-1995-2
[11] H. Sazegaran, M. Hojati, “Effects of copper content on microstructure and mechanical properties of open-cell steel foams,” International Journal of Minerals, Metallurgy, Materials, vol. 26, pp. 588-596, (2019).
https://doi.org/10.1007/s12613-019-1767-z
[12] H. Sazegaran, A. R. Kiani-Rashid and J. Vahdati Khaki, “Effects of sphere size on the microstructure and mechanical properties of ductile iron–steel hollow sphere syntactic foams,” International Journal of Minerals, Metallurgy, and Materials, vol. 23, pp. 676-682, (2016). https://doi.org/10.1007/s12613-016-1280-6
[13] H. Sazegaran, “Investigation on Production Parameters of Steel Foam Manufactured Through Powder Metallurgical Space Holder Technique,” Metals and Materials International, vol. 27, pp. 3371-3384, (2021).
https://doi.org/10.1007/s12540-020-00659-z
[14] G. Pia, F. Delogu, “Hardening of nanoporous Au foams induced by surface chemistry,” Materials Letters, vol. 196, pp. 332-334, (2017). https://doi.org/10.1016/j.matlet.2017.03.096
[15] M. Liu, Z. Li, F. Li, Q. Jin, X. Yang and C. Xia, “Mechanical properties and in vitro biodegradation behavior of GASAR porous Mg-Ag alloy,” Materials Letters, vol. 315, pp. 131920, (2022).
https://doi.org/10.1016/j.matlet.2022.131920
[16] H.J. Kim, D.S. Shim, “Compressive properties of AlSi10Mg foams additively manufactured with different foaming agents TiH2 and ZrH2,” Journal of Manufacturing Processes, vol. 94, pp. 63-68, (2023).
https://doi.org/10.1016/j.jmapro.2023.02.064
[17] S. Wi, U. Berardi, S. D. Loreto and S. Kim, “Microstructure and thermal characterization of aerogel-graphite polyurethane spray-foam composite for high efficiency thermal energy utilization,” Journal of Hazardous Materials, vol. 397, pp. 122656, (2020). https://doi.org/10.1016/j.jhazmat.2020.122656
[18] G. Yuan, Y. Li, L. Hu and W. Fu, “Preparation of shaped aluminum foam parts by investment casting,” Journal of Materials Processing Technology, vol. 314, pp. 117897, (2023). https://doi.org/10.1016/j.jmatprotec.2023.117897
[19] M. Firoozbakht, A. Blond, G. Zimmermann, A. C. Kaya, C. Fleck and A. Buhrig-Polaczek, “Analyzing the influence of the investment casting process parameters on microstructure and mechanical properties of open-pore Al-7Si foams,” Journal of Materials Research and Technology, vol. 23, pp. 2123-2135, (2023).
https://doi.org/10.1016/j.jmrt.2023.01.167
[20] G. Yuan, Y. Li, X. Zhou and L. Hu, “Preparation of complex shaped aluminum foam by a novel casting-foaming method”, Materials Letters, vol. 293, 129673, (2021). https://doi.org/10.1016/j.matlet.2021.129673
[21] S. Cao, N. Ma, Y. Zhang, R. Bo and Y. Lu, “Fabrication, mechanical properties, and multifunctionalities of particle reinforced foams: A review”, Thin-Walled Structures, vol. 186, 110678, (2023).
https://doi.org/10.1016/j.tws.2023.110678
[22] A. Sinha, A. Cherdantsev, K. Johnson, J. Vasques and D. Hann, “How do the liquid properties affect the entrapment of bubbles in gas sheared liquid flows”, International Journal of Heat and Fluid Flow, vol. 92, pp. 108878, (2021). https://doi.org/10.1016/j.ijheatfluidflow.2021.108878
[23] T. Yi Lim, W. Zhai, X. Song, X. Yu, T. Li, B. W. Chua and F. Cui, “Effect of slurry composition on the microstructure and mechanical properties of SS316L open-cell foam”, Materials Science and Engineering: A, vol. 772, 138798, (2020). https://doi.org/10.1016/j.msea.2019.138798
[24] N.S. K. Ho, P. Li, S. Raghavan and T. Li, “The effect of slurry composition on the microstructure and mechanical properties of open-cell Inconel foams manufactured by the slurry coating technique”, Materials Science and Engineering: A, vol. 687, pp. 123-130, (2017). https://doi.org/10.1016/j.msea.2017.01.038
[25] H. Sazegaran, M. Fazeli, M. Ganjeh and H. Nasiri, “Effect of Molybdenum Addition on Microstructural and Mechanical Characterization of Highly Porous Steels”, Metals and Materials International, vol. 27, pp. 5228-5238, (2021). https://doi.org/10.1007/s12540-020-00790-x
[26] H. Sazegaran, A. Feizi and M. Hojati, “Effect of Cr Contents on the Porosity Percentage, Microstructure, and Mechanical Properties of Steel Foams Manufactured by Powder Metallurgy”, Transactions of the Indian Institute of Metals, vol. 72, pp. 2819-2826, (2019). https://doi.org/10.1007/s12666-019-01758-1
[27] M. Sharma, O. P. Modi and P. Kumar, “Synthesis and characterization of copper foams through a powder metallurgy route using a compressible and lubricant space-holder material”, International Journal of Minerals, Metallurgy, and Materials, vol. 25, pp. 902-912, (2018).
https://doi.org/10.1007/s12613-018-1639-y
[28] H. Jain, D. P. Mondal, G. Gupta and R. Kumar, “Effect of compressive strain rate on the deformation behaviour of austenitic stainless steel foam produced by space holder technique”, Materials Chemistry and Physics, vol. 259, pp. 124010, (2021). https://doi.org/10.1016/j.matchemphys.2020.124010
[29] S. Sathaiah, R. Dubey, A. Pandey, N. R. Gorhe, T. C. Joshi, V. Chilla, D. Muchhala and D. P. Mondal, “Effect of spherical and cubical space holders on the microstructural characteristics and its consequences on mechanical and thermal properties of open-cell aluminum foam,” Materials Chemistry and Physics, vol. 273, pp. 125115, (2021).
https://doi.org/10.1016/j.matchemphys.2021.125115
[30] S. Guarino, M. Barletta, S. Pezzola and S. Vesco, “Manufacturing of steel foams by Slip Reaction Foam Sintering (SRFS)”, Materials and Design, vol. 40, pp. 268-275, (2012). https://doi.org/10.1016/j.matdes.2012.03.022
[31] H. Sazegaran, A. R. Kiani-Rashid and J. Vahdati Khaki, “Effects of copper content on the shell characteristics of hollow steel spheres manufactured using an advanced powder metallurgy technique”, International Journal of Minerals, Metallurgy, and Materials, vol. 23, pp. 434-441, (2016). https://doi.org/10.1007/s12613-016-1253-9
[32] H. Sazegaran, A. R. Kiani-Rashid and J. Vahdati Khaki, “Effects of sphere size on the microstructure and mechanical properties of ductile iron–steel hollow sphere syntactic foams”, International Journal of Minerals, Metallurgy, and Materials, vol. 23, pp. 676-682, (2016). https://doi.org/10.1007/s12613-016-1280-6
[33] T. Wan, Y. Liu, C. Zhou, X. Chen and Y. Li, “Fabrication, properties, and applications of open-cell aluminum foams: A review”, Journal of Materials Science and Technology, vol. 62, pp. 11-24, (2021).
https://doi.org/10.1016/j.jmst.2020.05.039
[34] X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, S.O. Kucheyev, N.X. Fang and C.M. Spadaccini, “Ultralight, ultrastiff mechanical metamaterials,” Science, vol. 344, pp. 1373-1377, (2014). https://doi.org/10.1126/science.1252291
[35] I. A. Figueroa, I. Mendieta, M. F. Azamar, G. A. Lara-Rodríguez and O. Novelo-Peralta, “Mechanical behavior of heat-treated Al-Cu-Mg open-cell foams”, Materials Letters, vol. 284, pp.129021, (2021).
https://doi.org/10.1016/j.matlet.2020.129021
[36] B. Soni, S. Biswas, “Evaluation of mechanical properties under quasi-static compression of open-cell foams of 6061-T6 Al alloy fabricated by pressurized salt infiltration casting method”, Materials Characterization, vol. 130, pp. 198-203, (2017). https://doi.org/10.1016/j.matchar.2017.06.008
[37] D. Yang, Z. Hu, W. Chen, J. Lu, J. Chen, H. Wang, L. Wang, J. Jiang and A. Ma, “Fabrication of Mg-Al alloy foam with close-cell structure by powder metallurgy approach and its mechanical properties”, Journal of Manufacturing Processes, vol. 22, pp. 290-296, (2016). https://doi.org/10.1016/j.jmapro.2016.04.003
[38] H. Leda, “Phase transformations and mechanical properties of steels containing 0.6% C, 0.7-1.4% Mn and microalloyed with V and Ti”, Journal of Materials Processing Technology, vol. 64, no. 1-3, pp. 247-254, (1997).
https://doi.org/10.1016/S0924-0136(96)02574-5
[39] M.T. Chen, A. Cai, M. Pandey, C. Shen, Y. Zhang and L. Hu, “Mechanical properties of high strength steels and weld metals at arctic low temperatures”, Thin-Walled Structures, vol. 185, pp. 110543, (2023).
https://doi.org/10.1016/S0924-0136(96)02574-5
[40] S. Cao, N. Ma, Y. Zhang, R. Bo and Y. Lu, “Fabrication, mechanical properties, and multifunctionalities of particle reinforced foams: A review”, Thin-Walled Structures, vol. 186, pp. 110678, (2023).
https://doi.org/10.1016/j.tws.2023.110678
[41] H. Jain, D.P. Mondal, G. Gupta and R. Kumar, “Silver flowers decorated open cell stainless steel foam for bone scaffold application”, Materials Today Communications, vol. 34, pp. 105392, (2023).
https://doi.org/10.1016/j.mtcomm.2023.105392
[42] A.A. Hariri, S. Selimli and H. Dumrul, “Effectiveness of heat sink fin position on photovoltaic thermal collector cooling supported by paraffin and steel foam: An experimental study”, Applied Thermal Engineering, vol. 213, pp. 118784, (2022). https://doi.org/10.1016/j.applthermaleng.2022.118784
[43] H. Jain, R. Kumar, G. Gupta and D.P. Mondal, “Microstructure, mechanical and EMI shielding performance in open cell austenitic stainless steel foam made through PU foam template”, Materials Chemistry and Physics, vol. 241, pp.122273, (2020). https://doi.org/10.1016/j.matchemphys.2019.122273
[44] M. Su, Q. Zhou and H. Wang, “Mechanical properties and constitutive models of foamed steels under monotonic and cyclic loading”, Construction and Building Materials, vol. 231, pp. 116959, (2020).
https://doi.org/10.1016/j.conbuildmat.2019.116959
[45] M. Tavares, J.M. Weigand, L.C.M. Vieira, S.J.C. Almeida and S. Szyniszewski, “Mechanical behavior of steel and aluminum foams at elevated temperatures. Local buckling based approach toward understanding of the material system behavior”, International Journal of Mechanical Sciences, vol. 181, pp. 105754, (2020).
https://doi.org/10.1016/j.conbuildmat.2019.116959
[46] I. Mutlu, E. Oktay, “Influence of Fluoride Content of Artificial Saliva on Metal Release from 17-4 PH Stainless Steel Foam for Dental Implant Applications”, Journal of Materials Science and Technology, vol. 29, no. 6, pp. 582-588, (2013). https://doi.org/10.1016/j.jmst.2013.03.006
[47] M. Madgule, C.G. Sreenivasa and A.V. Borgaonkar, “Aluminium metal foam production methods, properties and applications- a review”, Materials Today: Proceedings, vol. 77, pp. 673-679, (2023).
https://doi.org/10.1016/j.matpr.2022.11.287
[48] A. Lomte, B. Sharma, M. Drouin and D. Schaffarzick, “Sound absorption and transmission loss properties of open-celled aluminum foams with stepwise relative density gradients”, Applied Acoustics, vol. 193, pp. 108780, (2022).
https://doi.org/10.1016/j.apacoust.2022.108780
[49] W.C. Feng, B. Ding, Y. Zhang, M.F. Mu and L. Gong, “How can copper foam better promote the melting process of phase change materials”, International Journal of Thermal Sciences, vol. 187, pp. 108199, (2023).
https://doi.org/10.1016/j.ijthermalsci.2023.108199
[50] M. Cen, S. Deng, C. Hu, J. Luo, S. Tan, C. Wang and Y. Wu, “Enhanced boiling heat transfer of HFE-7100 on copper foams under overflow conditions”, Applied Thermal Engineering, vol. 224, pp. 120083, (2023).
https://doi.org/10.1016/j.applthermaleng.2023.120083
[51] X. Wei, N. Zhang, Z. Peng, X. Li, Y. Du and Y. Yuan, “Local optimization strategy of copper foam on heat transfer enhancement for phase change materials”, Journal of Energy Storage, vol. 58, pp. 106407, (2023).
https://doi.org/10.1016/j.est.2022.106407
[52] Y. Diao, Z. Wang, Y. Zhao, Z. Wang, C. Chen and D. Zhang, “Heat transfer enhancement of a multichannel flat tube-copper foam latent heat storage unit”, Applied Thermal Engineering, vol. 229, pp. 120559, (2023).
https://doi.org/10.1016/j.applthermaleng.2023.120559
[53] J. Zou, X. Meng, “Investigating the effect of distribution form of copper foam fins on the thermal performance improvement of latent thermal energy storage units”, International Communications in Heat and Mass Transfer, vol. 141, pp. 106571, (2023). https://doi.org/10.1016/j.icheatmasstransfer.2022.106571
[54] A. Devikar, D. Bhosale, K. Georgy, M. Mukherjee and G.S.V. Kumar, “Effect of beryllium on the stabilization of Mg-3Ca alloy foams”, Materials Science and Engineering: B, vol. 286, pp. 116007, (2022).
https://doi.org/10.1016/j.mseb.2022.116007
[55] H. Qu, D. Rao, J. Cui, N. Gupta, H. Wang, Y. Chen, A. Li and L. Pan, “Mg-matrix syntactic foam filled with alumina hollow spheres coated by MgO synthesized with solution coating-sintering”, Journal of Materials Research and Technology, vol. 24, pp. 2357-2371, (2023). https://doi.org/10.1016/j.jmrt.2023.03.160
[56] D. Yang, S. Guo, J. Chen, C. Qiu, S. O. Agbedor, A. Ma, J. Jiang and L. Wang, “Preparation principle and compression properties of cellular Mg-Al-Zn alloy foams fabricated by the gas release reaction powder metallurgy approach”, Journal of Alloys and Compounds, vol. 857, pp. 158112, (2021).
https://doi.org/10.1016/j.jallcom.(2020).158112
[57] A. Abhash, P. Singh, R. Kumar, S. Pandey, S. Sathaiah, M.M. Shafeeq and D.P. Mondal, “Effect of Al addition and space holder content on microstructure and mechanical properties of Ti2Co alloys foams for bone scaffold application”, Materials Science and Engineering: C, vol. 109, pp. 110600, (2020).
https://doi.org/10.1016/j.msec.2019.110600
[58] Q. Wang, L. Qiu, X. Tan, Z. Liu, S. Gao and R. Wang, “Amorphous TiO2 granular nanodisks on porous Ti foam for highly effective solar cells and photocatalysts”, Journal of the Taiwan Institute of Chemical Engineers, vol. 102, pp. 85-91, (2019). https://doi.org/10.1016/j.jtice.2019.05.007
[59] M. Shbeh, Z. J. Wally, M. Elbadawi, M. Mosalagae, H. Al-Alak, G. C. Reilly and R Goodall, “Incorporation of HA into porous titanium to form Ti-HA biocomposite foams”, Journal of the Mechanical Behavior of Biomedical Materials, vol. 96, pp. 193-203, (2019). https://doi.org/10.1016/j.jmbbm.2019.04.043
[60] J. H. Cho, J. J. Rha, G. Y. Lee, H. Jeon and J. Y. Kim, “Microstructure and mechanical properties of open-cell Ni-foams with hollow struts and NiO oxide layers”, Materials Science and Engineering: A, vol. 863, pp. 144519, (2023). https://doi.org/10.1016/j.msea.2022.144519
[61] Y.F. Li, Bing Li, Y.H. Song, L. Ding, G.D. Yang, J. Lin, X.L. Wu, J.P. Zhang, C. Shao and H.Z. Sun, “A neotype carbon-based Ni foam achieved by commercial strategy towards smooth and light Li metal anodes”, Electrochimica Acta, vol. 437, pp. 141530, (2023). https://doi.org/10.1016/j.electacta.(2022).141530
[62] L. Zhu, X. Tong, Z. Ye, Z. Lin, T. Zhou, S. Huang, Y. Li, J. Lin, C. Wen and J. Ma, “Zinc phosphate, zinc oxide, and their dual-phase coatings on pure Zn foam with good corrosion resistance, cytocompatibility, and antibacterial ability for potential biodegradable bone-implant applications”, Chemical Engineering Journal, vol. 450, pp. 137946, (2022). https://doi.org/10.1016/j.cej.2022.137946
[63] M. Mohbe, D.P. Mondal, “Properties of Zn foam filled with cenosphere microballoons”, Materials Today: Proceedings, vol. 46, pp. 7448-7451, (2021). https://doi.org/10.1016/j.matpr.2021.01.073
[64] G. Pia, F. Delogu, “Hardening of nanoporous Au foams induced by surface chemistry”, Materials Letters, vol. 196, pp. 332-334, (2017). https://doi.org/10.1016/j.matlet.2017.03.096
[65] K. Yanamandra, D. Pinisetty and N. Gupta, “Impact of carbon additives on lead-acid battery electrodes: A review”, Renewable and Sustainable Energy Reviews, vol. 173, pp. 113078, (2023).
https://doi.org/10.1016/j.rser.2022.113078
[66] G. Costanza, M. E. Tata, “Recycling of Exhaust Batteries in Lead-Foam Electrodes”, Rewas, vol. 914, pp. 272-278, (2013). https://doi.org/10.1007/978-3-319-48763-2_28
[67] A. Irretier, J. Banhart, “Lead and lead alloy foams”, Acta Materialia, vol. 53, no. 18, pp. 4903-4917, (2005).
https://doi.org/10.1016/j.actamat.2005.07.007
[68] S.M. Tabaatabaai, M.S. Rahmanifar, S.A. Mousavi, S. Shekofteh, J. Khonsari, A. Oweisi, M. Hejabi, H. Tabrizi, S. Shirzadi and B. Cheraghi, “Lead-acid batteries with foam grids”, Journal of Power Sources, vol. 158, no. 2, pp. 879-884, (2006). https://doi.org/10.1016/j.jpowsour.2005.11.017
[69] N. Bekoz, E. Oktay, “High temperature mechanical properties of low alloy steel foams produced by powder metallurgy”, Materials and Design, vol. 53, pp. 482-489, (2014). https://doi.org/10.1016/j.matdes.2013.07.050
[70] N. Bekoz, E. Oktay, “Effect of heat treatment on mechanical properties of low alloy steel foams”, Materials and Design, vol. 51, pp. 212-218, (2013). https://doi.org/10.1016/j.matdes.2013.07.050
[71] H. Jain, D.P. Mondal, G. Gupta, R. Kumar and S. Singh, “Synthesis and characterization of 316L stainless steel foam made through two different removal process of space holder method”, Manufacturing Letters, vol. 26, pp. 33-36, (2020). https://doi.org/10.1016/j.mfglet.2020.09.005
[72] M. Mirzae, M. H. Paydar, “A novel process for manufacturing porous 316L stainless steel with uniform pore distribution”, Materials and Design, vol. 121, pp. 442-449, (2017). https://doi.org/10.1016/j.matdes.2017.02.069
[73] N. Bekoz E. Oktay, “The role of pore wall microstructure and micropores on the mechanical properties of Cu-Ni-Mo based steel foams,” Materials Science and Engineering: A, vol. 612, pp. 387-397, (2014).
https://doi.org/10.1016/j.msea.2014.06.064
[74] W.S. Barakat, A. Wagih, O.A. Elkady, A. Abu-Oqail, A. Fathy and A. EL-Nikhaily, “Effect of Al2O3 nanoparticles content and compaction temperature on properties of Al-Al2O3 coated Cu nanocomposites”, Composites Part B: Engineering, vol. 175, pp. 107140, (2019).
https://doi.org/10.1016/j.compositesb.2019.107140
[75] H. Jain, G. Gupta, D.P. Mondal, A. K. Srivastava, A. Pandey, S. k. Srivastava and R. Kumar, “Effect of particle shape on microstructure and compressive response of 316L SS foam by space holder technique”, Materials Chemistry and Physics, vol. 271, pp.124924, (2021).
https://doi.org/10.1016/j.matchemphys.2021.124924
[76] Y.H. Geng, P.H. Wang, “Effect of glass fibre (GF) addition on microstructure and tensile property of GF/Pb composites fabricated by powder metallurgy”, Transactions of Nonferrous Metals Society of China, vol. 26, no. 10, pp. 2672-2678, (2016). https://doi.org/10.1016/S1003-6326(16)64394-7