1- Asghari, Sh., & Shahabi M. (2019). Spatial variability of soil saturated hydraulic conductivity and penetration resistance in salt-affected lands around Lake Urmia. Water and Soil, 33(1), 103-116. (In Persian with English abstract). https://doi.org/10.22067/JSW.V33I1.74411
2- Asghari, Sh., Sheykhzadeh, G.R., & Shahabi, M. (2017). Geostatistical analysis of soil mechanical properties in Ardabil plain of Iran. Archives of Agronomy and Soil Science, 63(12), 1631-1643. https://doi.org/10.1080/03650340 .2017.1296136
3- Azadmard, B., Mosaddeghi, M.R., Ayoubi, S., Chavoshi, E., & Raoof, M. (2019). Estimation of near-saturated soil hydraulic properties using hybrid genetic algorithm-artificial neural network. Ecohydrology & Hydrobiology, 20(3), 437–449. https://doi.org/10.1016/j.ecohyd.2019.09.001
4- Ahmadzadeh Kaleibar, F., & Fuladipanah, M. (2023). Assessment of regression, support vector machine, and gene expression programming transfer functions to predict soil humidity parameters in Arasbaran plain. Journal of Water and Soil Science, 27(2), 135-149. https://doi.org/10.47176/jwss.27.2.42532
5- Ahmadi, A., Palizvan zand, P., & Palivan zand, H. (2018). Estimation of saturated hydraulic conductivity by using gene expression programming and ridge regression (A case study in East Azerbaijan province). Iranian Journal of Soil and Water Research, 48(5), 1087-1095. (In Persian with English abstract). https://doi.org/10.22059/ijswr. 2018.218413.667555
6- Amirabedi, H., Asghari, Sh., Mesri, T., & Balandeh, N. (2016). Prediction of mean weight diameter of aggregates using artificial neural network and regression models. Applied Soil Research, 4(1), 39-53. (In Persian with English abstract)
7- Bayat, H., Neyshabouri, M.R., & Hajabbasi, M. (2008). Comparing neural networks, linear and nonlinear regression techniques to model penetration resistance. Turkish Journal of Agriculture and Forestry, 32, 425-433.
8- Blake, G.R., & Hartge, K.H. (1986a). Bulk density. p. 363-375. In: Klute A. (ed). Methods of Soil Analysis Part 1, Physical and Mineralogical Methods. 2nd ed. American Society of Agronomy, Madison, WI.
9- Blake, G.R., & Hartge, K.H. (1986b). Particle density. p. 377-381. In: Klute A. (ed). Methods of Soil Analysis Part 1, Physical and Mineralogical Methods. 2nd ed. ASA and SSSA, Madison, WI.
10- Campbell. G.S. (1985). Soil Physics with Basic: Transport Models for Soil–Plant System. Elsevier. New York. 150 p.
11- Dinarvand, H., Asghari, Sh., & Shahabi, M. (2018). Estimating soil penetration resistance using neurofuzzy, support vector machine and gene expression programming methods. Available at https://civilica.com/doc/808626 (In Persian with English abstract)
12- Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13, 87–129.
13- Ghorbani, M.A., Deo, R.C., Kashani, M.H., Shahabi M., & Ghorbani, S. (2019). Artificial intelligence-based fast and efficient hybrid approach for spatial modeling of soil electrical conductivity. Soil and Tillage Research, 186, 152–164. https://doi.org/10.1016/j.still.2018.09.012
14- Gardner, W.H. (1986). Water content. p. 493-544. In: Klute A. (ed). Methods of Soil Analysis. Part 1. 2nd ed. Agronomy. Monograph. 9. ASA, Madison, WI.
15- Gee, G.W., & Or, D. (2002). Particle-size analysis. p. 255–293. In: Dane J. H., & Topp G. C. (eds.). Methods of Soil Analysis. Part 4. SSSA Book Series No. 5. Soil Science Society of America, Madison, WI.
16- Kelishadi, H., Mossaddeghi, M.R., Hajabbasi, M.A., & Ayoubi, S. (2014). Near-saturated soil hydraulic properties as influenced by land use management systems in Koohrang region of central Zagros, Iran. Geoderma, 213, 426-434. https://doi.org/10.1016/j.geoderma.2013.08.008
17- Kozak, E., Pachepsky, Y.A., Sokolowski, S., Sokolowska, Z., & Stepniewski, W. (1996). A modified number-based method for estimating fragmentation fractal dimensions of soils. Soil Science Society of America Journal, 60, 1291-1297.
18- Lowery, B., & Morrison, JE. (2002). Soil penetrometer and penetrability. In: Dane J.H., & Topp GC (eds.). Methods of soil analysis, part 4. Physical methods. Madison (WI): Soil Science Society of America; pp. 363–388.
19- Nelson, D.W., & Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter. p. 539–579. In A.L. Page et al. (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
20- Page, A.L. (ed.).(1985). Methods of Soil Analysis. Part 2. Chemical and Microbiological Methods. Agronomy No. 9. American Society of Agronomy, Madison, WI.
21- Santos, F.L., De Jesus, V.A.M., & Valente, D.S.M. (2012). Modeling of soil penetration resistance using statistical analyses and artificial neural networks. Acta Scientiarum. Agronomy, 34, 219-224.
22- Sheykhzadeh, G.R., Asghari, Sh., & Mesri Gundoshmian, T. (2016). Estimating penetration resistance in agricultural soils of Ardabil plain using artificial neural network and regression methods. Water and Soil, 30(3), 941-954. (In Persian with English abstract). https://doi.org/10.22067/JSW.V30I3.42235
23- Vaz, C.M.P., Manieri, J.M., de Maria, I.C., & Tuller, M. (2011). Modeling and correction of soil penetration resistance for varying soil water content. Geoderma, 166, 92-101. https://doi.org/10.1016/j.geoderma.2011.07.016
24- Whalley, W., To, J., Kay, B.D., & Whitmore, A.P. (2007). Prediction of the penetrometer resistance of soils with models with few parameters. Geoderma, 137, 370–377. https://doi.org/10.1016/j.geoderma.2006.08.029Get rights and content
25- Yazdani, A., Mosaddeghi, M.R., Khademi, H., Ayoubi, S., & Khayamim, F. (2014). Relationship between surface aggregate stability and some soil and climate properties in Isfahan province. Soil Management, 3(2), 23-31. (In Persian with English abstract)
26- Yoder, R.E. (1936). A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Journal of American Society Agronomy, 28, 337-35.
27- Zhang, R., & Zhang, S. (2024). Coefficient of permeability prediction of soils using gene expression programming. Engineering Applications of Artificial Intelligence, 128(107504). https://doi.org/10.1016/j.engappai.2023.107504