[1] A. Bouamer, N. Benrekaa and A. Younes, “Characterization of polylactic acid ceramic composites synthesized by casting method”, Materials Today: Proceedings, vol. 42, pp. 2959-2962, (2021).
https://doi.org/10.1016/j.matpr.2020.12.803
[2] P. K. Penumakala, J. Santo and A. Thomas, “A critical review on the fused deposition modeling of thermoplastic polymer composites”, Composites Part B: Engineering, vol. 201, pp. 108336, (2020).
https://doi.org/10.1016/j.compositesb.2020.108336
[3] E. Sucinda, M. A. Majid, M. Ridzuan, M. Sultan and A. Gibson, “Analysis and physicochemical properties of cellulose nanowhiskers from Pennisetum purpureum via different acid hydrolysis reaction time”, International journal of biological macromolecules, vol. 155, pp. 241-248, (2020).https://doi.org/10.1016/j.ijbiomac.2020.03.199
[4] X. Wang, Y. Tang, X. Zhu, Y. Zhou, and X. Hong, “Preparation and characterization of polylactic acid/polyaniline/nanocrystalline cellulose nanocomposite films” International journal of biological macromolecules, vol. 146, pp. 1069-1075,(2020). https://doi.org/10.1016/j.ijbiomac.2019.09.233
[5] E. Sucinda, M. A. Majid, M. Ridzuan, E. Cheng, H. Alshahrani and N. Mamat, “Development and characterisation of packaging film from Napier cellulose nanowhisker reinforced polylactic acid (PLA) bionanocomposites”, International journal of biological macromolecules, vol. 187, pp. 43-53, (2021).
https://doi.org/10.1016/j.ijbiomac.2021.07.069
[6] K. Jin, Y. Tang, X. Zhu and Y. Zhou, “Polylactic acid based biocomposite films reinforced with silanized nanocrystalline cellulose”, International Journal of Biological Macromolecules, vol. 162, pp. 1109-1117, (2020).
https://doi.org/10.1016/j.ijbiomac.2020.06.201
[7] R. N. Oosterbeek, K.-A. Kwon, P. Duffy, S. McMahon, X. C. Zhang, S. M. Best and R. E. Cameron, “Tuning structural relaxations, mechanical properties, and degradation timescale of PLLA during hydrolytic degradation by blending with PLCL-PEG”, Polymer Degradation and Stability, vol. 170, pp. 109015,( 2019).
https://doi.org/10.1016/j.polymdegradstab.2019.109015
[8] C.E.Corcione, F. Gervaso, F. Scalera, S.K.Padmanabhan, M. Madaghiele, F. Montagna, A. Sannino, A. Licciulli, and A. Maffezzoli, “Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling”, Ceramics International, vol. 45, no. 2, pp. 2803-2810, (2019).
https://doi.org/10.1016/j.ceramint.2018.07.297
[9] J. Lee, H. Lee, K.-H. Cheon, C. Park, T.-S. Jang, H.-E. Kim and H.-D. Jung, “Fabrication of poly (lactic acid)/Ti composite scaffolds with enhanced mechanical properties and biocompatibility via fused filament fabrication )FFF)–based 3D printing”, Additive Manufacturing, vol. 30, pp. 100883, (2019).
https://doi.org/10.1016/j.addma.2019.100883
[10] A. A. Lopera, V. D. Bezzon, V. Ospina, J. L. Higuita-Castro, F. J. Ramirez, H. G. Ferraz, M. T. Orlando, C. G. Paucar, S. M. Robledo and C. P. Garcia, “Obtaining a fused PLA-calcium phosphate-tobramycin-based filament for 3D printing with potential antimicrobial application”, Journal of the Korean Ceramic Society, vol. 60, no. 1, pp. 169-182, (2023).
[11] M. Furko, K. Balázsi, and C. Balázsi, “Calcium Phosphate Loaded Biopolymer Composites—A Comprehensive Review on the Most Recent Progress and Promising Trends,” Coatings, vol. 13, no. 2, pp. 360, (2023).
https://doi.org/10.3390/coatings13020360
[12] T. S. Carvalho, N. Ribeiro, P. M. Torres, J. C. Almeida, J. H. Belo, J. Araújo, A. Ramos, M. Oliveira, and S. M. Olhero, “Magnetic polylactic acid-calcium phosphate-based biocomposite as a potential biomaterial for tissue engineering applications,” Materials Chemistry and Physics, vol. 296, pp. 127175,( 2023).
https://doi.org/10.1016/j.matchemphys.2022.127175
[13] M. Asadollahi, E. Gerashi, M. Zohrevand, M. Zarei, S. S. Sayedain, R. Alizadeh, S. Labbaf, and M. Atari, “Improving mechanical properties and biocompatibility of 3D printed PLA by the addition of PEG and titanium particles, using a novel incorporation method,” Bioprinting, vol. 27, pp. e00228, (2022). https://doi.org/10.1016/j.bprint.2022.e00228
[14] M. Olam, “Determining of process parameters of the PLA/titanium dioxide/hydroxyapatite filament”, Advances in Materials and Processing Technologies, vol. 8, no. 4, pp. 4776-4787, (2022).
https://doi.org/10.1080/2374068X.2022.2080332
[15] M. Mohammadi-Zerankeshi, and R. Alizadeh, “3D-printed PLA-Gr-Mg composite scaffolds for bone tissue engineering applications,” Journal of Materials Research and Technology, vol. 22, pp. 2440-2446, (2023).
https://doi.org/10.1016/j.jmrt.2022.12.108
[16] M. Ghodrati, S. M. Rafiaei and L. Tayebi, “Fabrication and evaluation of PLA/MgAl2O4 scaffolds manufactured through 3D printing method”, Journal of the Mechanical Behavior of Biomedical Materials, vol. 145, pp. 106001, (2023). https://doi.org/10.1016/j.jmbbm.2023.106001
[17] C. Pascual-González, C. Thompson, J. de la Vega, N. Biurrun Churruca, J. P. Fernández-Blázquez, I. Lizarralde, D. Herráez-Molinero, C. González and J. LLorca, “Processing and properties of PLA/Mg filaments for 3D printing of scaffolds for biomedical applications”, Rapid Prototyping Journal, vol. 28, no. 5, pp. 884-894, (2022).
[18] Y. Zhang, C. Li, W. Zhang, J. Deng, Y. Nie, X. Du, L. Qin and Y. Lai, “3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration”, Bioactive materials, vol. 16, pp. 218-231, (2022). https://doi.org/10.1016/j.bioactmat.2021.12.032
[19] Z. Lin, X. Sun and H. Yang, “The role of antibacterial metallic elements in simultaneously improving the corrosion resistance and antibacterial activity of magnesium alloys”, Materials & Design, vol. 198, pp. 109350, (2021).
https://doi.org/10.1016/j.matdes.2020.109350
[20] H. Lee, D. Y. Shin, Y. Na, G. Han, J. Kim, N. Kim, S.-J. Bang, H. S. Kang, S. Oh, C.-B. Yoon, J. Park, H.-E. Kim, H.-D. Jung and M.-H. Kang, “Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants”, Biomaterials Advances, vol. 152, pp. 213523, (2023).
https://doi.org/10.1016/j.bioadv.2023.213523
[21] F. Ali, A. Al Rashid, S. N. Kalva, and M. Koç, “Mg-Doped PLA Composite as a Potential Material for Tissue Engineering—Synthesis, Characterization, and Additive Manufacturing”, Materials, vol. 16, no. 19, pp. 6506, (2023).
https://doi.org/10.3390/ma16196506
[22] B. Niemczyk-Soczynska, A. Gradys, D. Kolbuk, A. Krzton-Maziopa and P. Sajkiewicz, “Crosslinking kinetics of methylcellulose aqueous solution and its potential as a scaffold for tissue engineering”, Polymers, vol. 11, no. 11, pp. 1772, (2019). https://doi.org/10.3390/polym11111772
[23] V. Santos-Rosales, A. Iglesias-Mejuto, and C. A. García-González, “Solvent-free approaches for the processing of scaffolds in regenerative medicine”, Polymers, vol. 12, no. 3, pp. 533, (2020).https://doi.org/10.3390/polym12030533
[24] W. J. Choi, K. S. Hwang, H. J. Kwon, C. Lee, C. H. Kim, T. H. Kim, S. W. Heo, J.-H. Kim, and J.-Y. Lee, “Rapid development of dual porous poly (lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application”, Materials Science and Engineering: C, vol. 110, pp. 110693,(2020).
https://doi.org/10.1016/j.msec.2020.110693
[25] S. M. Rafiaei, and M. Shokouhimehr, “Effect of fuels on nanostructure and luminescence properties of combustion synthesized MgAl2O4: Eu3+ phosphors”, Journal of Molecular Structure, vol. 1193, pp. 274-279, (2019).
https://doi.org/10.1016/j.molstruc.2019.05.057
[26] Y. S. Cho, B.-S. Kim, H.-K. You and Y.-S. Cho, “A novel technique for scaffold fabrication: SLUP (salt leaching using powder)”, Current Applied Physics, vol. 14, no. 3, pp. 371-377, (2014).
https://doi.org/10.1016/j.cap.2013.12.013
[27] O. Padmaraj, M. Venkateswarlu and N. Satyanarayana, “Structural, electrical and dielectric properties of spinel type MgAl2O4 nanocrystalline ceramic particles synthesized by the gel-combustion method”, Ceramics International, vol. 41, no. 2, pp. 3178-3185, (2015). https://doi.org/10.1016/j.ceramint.2014.10.169
[28] F. Wang, X. Yang, and J. Zhang, “Enhanced reactivity of methane combustion over Si-modified MgAl2O4 supported PdO catalysts,” Journal of the Energy Institute, vol. 106, pp. 101152, (2023).
https://doi.org/10.1016/j.joei.2022.101152
[29] M. Cao, T. Cui, Y. Yue, C. Li, X. Guo, X. Jia and B. Wang, “Preparation and characterization for the thermal stability and mechanical property of PLA and PLA/CF samples built by FFF approach”, Materials, vol. 16, no. 14, pp. 5023,(2023). https://doi.org/10.3390/ma16145023
[30] M. Khalilian, S. Golabi and M. Khodaei, “Characterization of Thermal and Structural Properties of Poly Lactic Acid Parts Fabricated By Fused Depositing Modeling”, New Process in Material Engineering, 15(4), 77-85, (2021). (In Persian)
[31] J. Jayaramudu, K. Das, M. Sonakshi, G. S. M. Reddy, B. Aderibigbe, R. Sadiku and S. S. Ray, “Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films”, International journal of biological macromolecules, vol. 64, pp. 428-43,(2014). https://doi.org/10.1016/j.ijbiomac.2013.12.034
[32] M. Arastouei, M. Khodaei, S. M. Atyabi and M. J. Nodoushan, “Poly lactic acid-akermanite composite scaffolds prepared by fused filament fabrication for bone tissue engineering”, Journal of Materials Research and Technology, vol. 9, no. 6, pp. 14540-14548, (2020). https://doi.org/10.1016/j.jmrt.2020.10.036
[33] C. Zhao, H. Wu, J. Ni, S. Zhang and X. Zhang, “Development of PLA/Mg composite for orthopedic implant: Tunable degradation and enhanced mineralization”, Composites Science and Technology, vol. 147, pp. 8-15, (2017).
https://doi.org/10.1016/j.compscitech.2017.04.037
[34] S.S. Milani, M.G. Kakroudi, N. P. Vafa, S. Rahro and F. Behboudi, “Synthesis and characterization of MgAl2O4 spinel precursor sol prepared by inorganic salts”, Ceramics International, vol. 47, no. 4, pp. 4813-4819, (2021).
https://doi.org/10.1016/j.ceramint.2020.10.051
[35] S. Dash, R. K. Sahoo, A. Das, S. Bajpai, D. Debasish and S. K. Singh, “Synthesis of MgAl2O4 spinel by thermal plasma and its synergetic structural study”, Journal of Alloys and Compounds, vol. 726, pp. 1186-1194, (2017).
https://doi.org/10.1016/j.jallcom.2017.08.085
[36] S. J. Álvarez-Méndez, J. L. Ramos-Suárez, A. Ritter, J. M. González and Á. C. Pérez, “Anaerobic digestion of commercial PLA and PBAT biodegradable plastic bags: Potential biogas production and 1H NMR and ATR-FTIR assessed biodegradation”, Heliyon, vol. 9, no. 6, (2023).https://doi.org/10.1016/j.heliyon.2023.e16691
[37] N. Choksi, H. Desai, “Synthesis of biodegradable polylactic acid polymer by using lactic acid monomer,” International Journal of Applied Chemistry, vol. 13, no. 2, pp. 377-384, (2017.)