مطالعه عددی اثر میدان مغناطیسی غیریکنواخت بر انتقال حرارت فروسیال در کانال با دو پله پیشرو
علوم کاربردی و محاسباتی در مکانیک
مقاله 5 ، دوره 36، شماره 3 - شماره پیاپی 37 ، شهریور 1403، صفحه 69-92 اصل مقاله (2.24 M )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/jacsm.2024.85877.1228
نویسندگان
حمیدرضا بهرامی* ؛ مهزیار قائدی
دانشکده مهندسی مکانیک، دانشگاه صنعتی قم، قم، ایران
چکیده
امروزه برای خنککاری تجهیزات الکترونیکی سامانههای رایانهای، از کانالهای خنککننده مایع استفاده می-شود. این کانالها برای عبور از المانها باید تغییر سطح مقطع بدهند، بنابراین دچار انقباض و یا انبساط ناگهانی میشوند. این تغییرات منجر به ایجاد نواحی میشود که از نظر انتقال حرارت نامساعد هستند. روشهای مختلفی برای بهبود انتقال حرارت در این نواحی پیشنهاد شده است. در مطالعه حاضر، امکان استفاده از میدان مغناطیسی غیریکنواخت برای بهبود انتقال حرارت در یک میلیکانال دارای دو انقباض ناگهانی پرداخته شده است. در این مطالعه فرض میشود فروسیال با خاصیت مغناطیسی (EMG-805-یک برند تجاری) با رژیم جریان آرام، توسعه یافته و پایا در میلیکانال جاری میشود. دیوارههای کانال آدیاباتیک و تنها به دیوارههای پله که در مجاورت المان الکترونیکی است، شار ثابت وارد میشود. اثرات مکان دوقطبی بر روی دیوارهای پایین و بالا، تعداد دوقطبیها، عدد رینولدز و قدرت میدان مغناطیسی بر روی میزان بهبود انتقال حرارت بررسی شده است. نتایج بهدستآمده نشان میدهد که افزایش عدد رینولدز و قدرت میدان مغناطیسی موجب افزایش ناسلت محلی میشود. اعمال تک دوقطبی مغناطیسی بر دیوار پایین و دقیقا بعد از پله موجب افزایش قابل توجه عدد ناسلت محلی و افزایش 05/164% عدد ناسلت متوسط نسبت به حالت بدون میدان مغناطیسی میشود.
کلیدواژهها
میدان مغناطیسی ؛ فروسیال ؛ عدد ناسلت ؛ انتقال حرارت ؛ دوقطبی ؛ پله پیشرو
مراجع
[1] A. Siricharoenpanich, S. Wiriyasart, P. Naphon, “Study on the thermal dissipation performance of GPU cooling system with nanofluid as coolant,” Case Studies in Thermal Engineering , vol. 25, p. 100904, (2021) doi: 10.1016/j.csite.2021.100904.
[2] F. M. Naduvilakath-Mohammed, R. Jenkins, G. Byrne, A. J. Robinson, “Closed loop liquid cooling of high-powered CPUs: A case study on cooling performance and energy optimization,” Case Studies in Thermal Engineering , vol. 50, p. 103472, ( 2023). doi: 10.1016/j.csite.2023.103472.
[3] M. Gorzin, A. A. Ranjbar, and M. J. Hosseini, “Experimental and numerical investigation on thermal and hydraulic performance of novel serpentine minichannel heat sink for liquid CPU cooling,” Energy Reports , vol. 8, pp. 3375–3385, (2022), doi:10.1016/j.egyr.2022.02.179.
[4] H. Bahrami, M. Ghaedi, A. Attarzadeh, “Employing nonuniform magnetic fields to improve energy transfer of flow after a sudden expansion inside a miniature channel: A hydrothermal study,” Engineering Reports , vol. n/a, no. n/a, p. e12847, doi: 10.1002/eng2.12847.
[5] R. W. Mei, A. Plotkin, “Navier-Stokes solutions for laminar incompressible flows in forward-facing step geometries,” AIAA Journal , vol. 24, no. 7, pp. 1106–1111, 1986, doi: 10.2514/3.9399.
[6] H. Stüer, A. Gyr, W. Kinzelbach, “Laminar separation on a forward facing step,” European Journal of Mechanics - B/Fluids , vol. 18, no. 4, pp. 675–692, (1999), doi: 10.1016/S0997-7546(99)00104-1.
[7] D. Wilhelm, C. Hrtel, and L. Kleiser, “Computational analysis of the two-dimensionalthree-dimensional transition in forward-facing step flow,” J ournal of Fluid Mech anics , vol. 489, pp. 1–27, (2003), doi: 10.1017/S0022112003004440 .
[8] J. G. Barbosa-Saldaña, N. K. Anand, “Flow Over a Three-Dimensional Horizontal Forward-Facing Step,” Numerical Heat Transfer, Part A: Applications , vol. 53, no. 1, pp. 1–17, (2007), doi:10.1080/10407780701446473.
[9] K. Javaherdeh, H. Karimi, “Numerical analysis of the obstacle effect with different geometry on the heat transfer of nanofluid flow in a rectangular channel,” Journal Of Applied and Computational Sciences in Mechanics , vol. 35, no. 3, pp. 51–64, ) 2023.( doi:10.22067/jacsm.2023.69607.1020.
[10] K. Javaherdeh, H. Karimi, “Numerical analysis of mix convection of sodium alginate non-Newtonian fluid with Al2O3 nanoparticle in a channel with block,” Journal Of Applied and Computational Sciences in Mechanics , vol. 32, no. 1, pp. 93–110, (2021). doi:10.22067/jacsm.2021.40042.
[11] H. Sayehvand and A. Basiri Parsa, “Numerical and Analytical Investigation of Thermal Dispersion Effects on the Heat Transfer of Nanofluid flow inside a Channel,” Journal Of Applied and Computational Sciences in Mechanics , vol. 29, no. 2, pp. 21–40, (2018), doi:10.22067/fum-mech.v29i2.58387.
[12] A. Ahmadi Nadooshan, D. Bahrami, M. Bayareh, “Numerical study of forced convection in a microchannel in the presence of nanofluid using the slip condition,” Journal Of Applied and Computational Sciences in Mechanics , vol. 34, no. 4, pp. 53–64, (2022). doi:10.22067/jacsm.2022.77928.1133.
[13] A. Sh. Kherbeet, H. A. Mohammed, B. H. Salman, H. E. Ahmed, O. A. Alawi, M. M. Rashidi, “Experimental study of nanofluid flow and heat transfer over microscale backward- and forward-facing steps,” Experimental Thermal and Fluid Science , vol. 65, pp. 13–21, ( 2015). doi:10.1016/j.expthermflusci.2015.02.023 .
[14] A. Sh. Kherbeet, H. A. Mohammed, K. M. Munisamy, B. H. Salman, “Combined convection nanofluid flow and heat transfer over microscale forward-facing step,” International Journal of Nanoparticles , vol. 7, no. 1, p. 1, (2014), doi:10.1504/IJNP.2014.062008.
[15] A. Barman and S. K. Dash, “Effect of obstacle positions for turbulent forced convection heat transfer and fluid flow over a double forward facing step,” International Journal of Thermal Sciences , vol. 134, pp. 116–128, (2018). doi: 10.1016/j.ijthermalsci.2018.08.009.
[16] K. U. Rehman, W. Shatanawi, A. B. Çolak, “Thermal analysis of flowing stream in partially heated double forward-facing step by using artificial neural network,” Case Studies in Thermal Engineering , vol. 37, p. 102221, (2022), doi:10.1016/j.csite.2022.102221.
[17] H. Talaei and H.-R. Bahrami, “Backward-facing step heat transfer enhancement: a systematic study using porous baffles with different shapes and locations and corrugating after step wall,” Heat and Mass Transfer , vol. 59, no. 12, pp. 2213–2230, (2023).
[18] H. Togun, G. Ahmadi, T. Abdulrazzaq, A. J. Shkarah, M. S. Newaz Kazi, A. Badarudin, M. R. Safaei, “Thermal performance of nanofluid in ducts with double forward-facing steps,” Journal of the Taiwan Institute of Chemical Engineers , vol. 47, pp. 28–42, (2015), doi:10.1016/j.jtice.2014.10.009.
[19] H. Togun, R. Homod, T. Abdulrazzaq, “Hybrid Al2O3-Cu/water nanofluid flow and heat transfer over vertical double forward-facing step,” Therm al Sci ence , vol. 25, no. 5 Part A, pp. 3517–3529, (2021), doi: 10.2298/TSCI201130080T .
[20] R. Ganguly, S. Sen, I. K. Puri, “Heat transfer augmentation using a magnetic fluid under the influence of a line dipole,” Journal of Magnetism and Magnetic Materials , vol. 271, no. 1, pp. 63–73, )2004(. doi: 10.1016/j.jmmm.2003.09.015.
[21] M. Ghasemian, Z. Najafian Ashrafi, M. Goharkhah, M. Ashjaee, “Heat transfer characteristics of Fe3 O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields,” Journal of Magnetism and Magnetic Materials , vol. 381, pp. 158–167, )2015(. doi:10.1016/j.jmmm.2014.12.078.
[22] M. Ashjaee, M. Goharkhah, L. A. Khadem, R. Ahmadi, “Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink,” Heat and Mass Transfer , vol. 51, no. 7, pp. 953–964, (2015). doi: 10.1007/s00231-014-1467-1.
[23] M. Bezaatpour, M. Goharkhah, “A magnetic vortex generator for simultaneous heat transfer enhancement and pressure drop reduction in a mini channel,” Heat Transfer , vol. 49, no. 3, pp. 1192–1213, ( 2020). doi: 10.1002/htj.21658.
[24] R. K. Shah, S. Khandekar, “Exploring ferrofluids for heat transfer augmentation,” Journal of Magnetism and Magnetic Materials , vol. 475, pp. 389–400, (2019). doi:10.1016/j.jmmm.2018.11.034.
[25] Z. Mehrez, A. El Cafsi, “Forced convection magnetohydrodynamic Al2 O3 –Cu/water hybrid nanofluid flow over a backward-facing step,” Journal of Thermal Analysis and Calorimetry , vol. 135, no. 2, pp. 1417–1427, (2019). doi: 10.1007/s10973-018-7541-z.
[26] M. Atashafrooz, M. Sheikholeslami, H. Sajjadi, A. Amiri Delouei, “Interaction effects of an inclined magnetic field and nanofluid on forced convection heat transfer and flow irreversibility in a duct with an abrupt contraction,” Journal of Magnetism and Magnetic Materials , vol. 478, pp. 216–226, (2019). doi: 10.1016/j.jmmm.2019.01.111.
[27] F. Selimefendigil, H. F. Öztop, “Hydro-thermal performance of CNT nanofluid in double backward facing step with rotating tube bundle under magnetic field,” International Journal of Mechanical Sciences , vol. 185, p. 105876, (2020), doi: 10.1016/j.ijmecsci.2020.105876.
[28] A. Allahverdizadeh, B. Dadashzadeh, H. Azimzadeh, “Nonlinear Vibration Analysis of Fluid Conveying Microtube under Parametric Magnetic Excitation,” Journal Of Applied and Computational Sciences in Mechanics , vol. 31, no. 1, pp. 69–86, (2020). doi:10.22067/fum-mech.v31i1.80049.
[29] F. Moradi and P. Pournaderi, “Simulation of nanofluid flow at low Reynolds number in a microchannel with one-sided sudden expansion under the effect of a magnetic field,” Journal Of Applied and Computational Sciences in Mechanics , vol. 35, no. 3, pp. 85–100, ( 2023). doi:10.22067/jacsm.2023.79298.1143.
[30] S. Bazkhane, I. Zahmatkesh, “Heat Transfer of Nanofluid in a Channel with Magnetic Field and Porous Obstacle using the Darcy-Brinkman-Forchheimer Model in the LBM Method,” Journal Of Applied and Computational Sciences in Mechanics , vol. 32, no. 1, pp. 153–172, (2021). doi: 10.22067/jacsm.2021.56842.0.
[31] H. Kazemi, Moghadam, S. S. Baghbani, S. Samadzadeh, H. Babazadeh, “Study of thermal performance of a ferrofluid with multivariable dependence viscosity within a wavy duct with external magnetic force,” Journal of Thermal Analysis & Calorimetry , vol. 143, no. 5, pp. 3849, )2021( doi: 10.1007/s10973-020-09324-4.
[32] Y. Menni, M. Ghazvini, H. Ameur, M. Kim, M. H. Ahmadi, M. Sharifpur, “Combination of baffling technique and high-thermal conductivity fluids to enhance the overall performances of solar channels,” Engineering with Computers , vol. 38, no. S1, pp. 607–628, (2022), doi:10.1007/s00366-020-01165-x.
[33] M. Malekan, A. Khosravi, S. Syri, “Heat transfer modeling of a parabolic trough solar collector with working fluid of Fe3 O4 and CuO/Therminol 66 nanofluids under magnetic field,” Applied Thermal Engineering , vol. 163, p. 114435, (2019). doi: 10.1016/j.applthermaleng.2019.114435.
[34] P. A. Petrini, D. R. Lester, G. Rosengarten, “Enhanced laminar heat transfer via magnetically driven ferrofluids,” International Journal of Heat and Mass Transfer , vol. 217, p. 124703, (2023), doi: 10.1016/j.ijheatmasstransfer.2023.124703.
[35] R. K. Shah and S. Khandekar, “Manipulation of Taylor bubble flow in a magneto-fluidic system,” Colloids and Surfaces A: Physicochemical and Engineering Aspects , vol. 593, p. 124589, (2020), doi:10.1016/j.colsurfa.2020.124589.
[36] M. Goharkhah, M. Esmaeili, M. Ashjaee, “Numerical Simulation and Optimization of Forced Convection Heat Transfer of Magnetic Nanofluid in a Channel in the Presence of a Non-Uniform Magnetic Field,” Journal of Space Science and Technology , vol. 11, no. 2, pp. 11-19, (2018).
[37] R. E. Rosensweig, Ferrohydrodynamics, Dover edition. Mineola , New York: Dover Publications, Inc, 2014, [E.book].
[38] R. K. Shah, J. K. Drave, S. Khandekar, “Thermal Transport in Laminar Convective Flow of Ferrofluids in the Presence of External Magnetic Field,” Journal of Heat Transfer , vol. 143, no. 6, p. 062101, (2021). doi: 10.1115/1.4050411.
[39] H. K. Pazarlıoğlu, R. Ekiciler, K. Arslan, N. Adil Mohammed Mohammed, “Exergetic, Energetic, and entropy production evaluations of parabolic trough collector retrofitted with elliptical dimpled receiver tube filled with hybrid nanofluid,” Applied Thermal Engineering , vol. 223, p. 120004, (2023). doi: 10.1016/j.applthermaleng.2023.120004 .
[40] A. Dahmani, J. Muñoz-Cámara, S. Laouedj, J. P. Solano, “Heat transfer enhancement of ferrofluid flow in a solar absorber tube under non-uniform magnetic field created by a periodic current-carrying wire,” Sustainable Energy Technologies and Assessments , vol. 52, p. 101996, (2022). doi:10.1016/j.seta.2022.101996 .
[41] https://ferrofluid.ferrotec.com/products/ferrofluid-emg/water/
[42] H. Bahrami, M. Ghaedi, “Using a non-uniform magnetic field to enhance heat transfer before a sudden compression in A 2D milli-channel,” Journal of Enhanced Heat Transfer , vol. 31, no. 4, pp. 45–69, (2024). doi: 10.1615/JEnhHeatTransf.2023050891 .
[43] B. F. Armaly, F. Durst, J. C. F. Pereira, B. Schönung, “Experimental and theoretical investigation of backward-facing step flow,” Journal of Fluid Mechanics , vol. 127, no. 1, p. 473, (1983), doi:10.1017/S0022112083002839 .
[44] G. Biswas, M. Breuer, F. Durst, “Backward-Facing Step Flows for Various Expansion Ratios at Low and Moderate Reynolds Numbers,” Journal of Fluids Engineering , vol. 126, no. 3, pp. 362–374, (2004), doi: 10.1115/1.1760532.
[45] M. M. Klazly, G. Bognár, “CFD investigation of backward - facing step nanofluid flow,” Journal of Physics: Conference Series , vol. 1564, no. 1, p. 012010, (2020). doi: 10.1088/1742-6596/1564/1/012010 .
[46] W. Wu and A. Kumar, “Numerical Investigation of Nanofluid Flow over a Backward Facing Step,” Aerospace , vol. 9, no. 9, p. 499, )2022(. doi: 10.3390/aerospace9090499.
[47] M. Bezaatpour, M. Goharkhah, “Effect of magnetic field on the hydrodynamic and heat transfer of magnetite ferrofluid flow in a porous fin heat sink,” Journal of Magnetism and Magnetic Materials , vol. 476, pp. 506–515, (2019), doi: 10.1016/j.jmmm.2019.01.028.
[48] O. A. Hussein, “Laminar Mixed Convective Nanofluid Flow in a Channel with Double Forward-Facing Steps: A Numerical Simulation Study,” Tikrit Journal of Engineering Sciences , vol. 24, no. 1, pp. 38–49, (2017), doi: 10.25130/tjes.24.1.04.
آمار
تعداد مشاهده مقاله: 358
تعداد دریافت فایل اصل مقاله: 171