- Alef, K., & Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Academic Press Harcourt Brace & Company Publishers London, 214–215 p.
- Ali, R.S., Kandeler, E., Marhan, S., Demyan, M.S., Ingwersen, J., Mirzaeitalarposhti, R., Rasche, F., Cadisch, G., & Poll, C. (2018). Controls on microbially regulated soil organic carbon decomposition at the regional scale, Soil Biology and Biochemistry, 118, 59-68. https://doi.org/10.1016/j.soilbio.2017.12.007
- Alvaro-Fuentes, J., Lopez, M.V., Arrue, J.L., & Cantero-Martınez, C. (2008). Management effects on soil carbon dioxide fluxes under semiarid Mediterranean conditions. Soil Science Society of America Journal, 72(1), 194–200. https://doi.org/10.2136/sssaj2006.0310
- Amézketa, E. (1999). Soil aggregate stability: A review. Journal of Sustainable Agriculture, 14, 83– https://doi. org/10.1300/J064v14n02_08
- Anderson, J.P.E. (1982). Soil respiration. pp. 831-871. In: Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.), Methods of soil analysis, Part 2- Chemical and Microbiological Properties. ASA-SSSA, Madison, Wisconsin, USA. https://doi.org/10.2134/agronmonogr9.2.2ed.c41
- Angers, A.D. (1998). Water stable aggregation of Quebec silty clay soils: some factors controlling its dynamics. Soil and Tillage Research, 47, 91– https://doi.org/10.1016/S0167-1987(98)00077-4
- Azadi, A., Seyed Jalali, S.A., Dehghan, R., & Navidi, M. (2021). Investigation of changes in physical and chemical properties of soil during different stages of sugarcane growth and estimation of organic carbon sequestration capacity, Iranian Journal of Soil Research, 35(3), 269– (In Persian with English abstract). https://doi.org/10.22092/ijsr. 2021.354244.600
- Bakker, M. (1999). Sugarcane Cultivation and Management. Kluwer Academic/Plenum Publishers, New York. http://dx.doi.org/10.1007/978-1-4615-4725-9
- Barzegar, A.R., Asoodar, M.A., & Ansari, M. (2000). Effectiveness of sugarcane residue incorporation at different water contents and the Proctor compaction loads in reducing soil compactibility. Soil and Tillage Research, 57, 167-172. https://doi.org/10.1016/S0167-1987(00)00158-6
- Blair, G.J., Lefroy, R.D.B., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46(7), 1459– https://doi.org/10.1071/AR9951459
- Boix-Fayos, C., Calvo-Cases, A., Imeson, A.C., & Soriano-Soto, M.D. (2001). Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators, Catena, 44, 47-67, https://doi.org/10.1016/S0341-8162(00)00176-4
- Bronick, C.J., & Lal, R. (2005). Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio. USA, Soil and Tillage Research, 81, 239– https://doi.org/10.1016/j.still.2004.09.011
- Cheng, M., Xiang, Y., Xue, Zh., An, Sh., & Darboux, F. (2015). Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China. Catena, 124, 77– https://doi.org/10.1016/j.catena. 2014.09.006
- Fattet, M., Fu, Y., Ghestem, M., Ma, W., Foulonneau, M., Nespoulous, J., Bissonnais, Y.L., & Stokes, A. (2011). Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena, 87, 60-69. https://doi.org/10.1016/j.catena.2011.05.006
- Ghorbani, Z., Jafari, S., & Khalil Moghaddam, B. (2013). The effect of physicochemical properties of soils under different land use on aggregate stability in some part of Khuzestan province. Journal of Soil Management and Sustainable Production, 3(2), 29-51. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.23221267. 1392.3.2.2.1
- Gul, S., & Whalen, J.K. (2022). Perspectives and strategies to increase the microbial-derived soil organic matter that persists in agroecosystems. Advances in Agronomy, 175, 347-401. https://doi.org/10.1016/bs.agron.2022.04.004
- Halder, M., Ahmad, S.J., Rahman, T., Joardar, J.C., Siddique, A.B., Islam, M.S., Islam, M.U., Liu, S., Rabbi, S., & Peng, X. (2023). Effects of straw incorporation and straw-burning on aggregate stability and soil organic carbon in a clay soil of Bangladesh, Geoderma Regional, 32, e00620. https://doi.org/10.1016/j.geodrs.2023.e00620
- Haynes, R.J., & Beare, M.H. (1997) Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biology and Biochemistry, 29, 1647–1653. https://doi.org/10.1016/S0038-0717(97)00078-3
- Jafari, S., Baghernejad, M., & Chorom, M. (2005). Evaluation some changes of physicochemical properties of cultivated land (under sugarcane cultivation and crop rotation) and Haft Tapeh pristine region of Khuzestan. Chamran, The Scientific Journal of Agriculture, 22, 165-181. (In Persian with English abstract)
- Jafari, S., Golchin, A., & Toolabifard, A. (2016). Effect of land use changes on physical fractionation properties of organic matter, clay dispersion and aggregate stability in some Khuzestan soils province. Iranian Journal of Soil and Water Reseach, 47, 593-603. (In Persian with English abstract). https://doi.org/10.22059/ijswr.2016.59329
- Kemper, W.D., & Rosenau, K. (1986). Size distribution of aggregates. 425-442. In: Klute, A. (ed.), Methods of Soil Analysis: Part 1: Physical and Mineralogical Methods, American Society of Agronomy, Madison, WI.
- Kristiansen, S.M., Schjønning, P., Thomsen, I.K., Olesen, J.E., Kristensen, K., & Christensen, B.T. (2006). Similarity of differently sized macro-aggregates in arable soils of different texture. Geoderma, 137, 147-154. https://doi.org/10.1016/j.geoderma.2006.08.005
- Le Bissonnais, L.Y. (1996). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47, 425-437. https://doi.org/10.1111/j.1365-2389.1996.tb01843.x
- Lee, J.H., Lucas, M., Guber, A.K., Li, X., & Kravchenko, A.N. (2023). Interactions among soil texture, pore structure, and labile carbon influence soil carbon gains, Geoderma, 439, 116675, https://doi.org/10.1016/j.geoderma. 2023.116675.
- Luca, E.F., Chaplot, V., Mutema, M., Feller, C., Ferreira, M.L., Cerri, C.C., & Couto, H.T.Z. (2018). Effect of conversion from sugarcane preharvest burning to residues green-trashing on SOC stocks and soil fertility status: Results from different soil conditions in Brazil, Geoderma, 310, 238-248, https://doi.org/10.1016/j.geoderma. 2017.09.020.
- Mikha, M.M., Green, T.R., Untiedt, T.J., & Hergret, G.W. (2024). Land management affects soil structural stability: Multi-index principal component analyses of treatment interactions, Soil and Tillage Research, 235, 105890. https://doi.org/10.1016/j.still.2023.105890
- Moradi, F., Ghorbani, Z., Khalili Moghadam, B., & Misaghi, P. (2015). Important characteristics influencing the cone penetration resistance in virgin, cultivated, and sugarcane land uses in some Khozestan soils. Iranian Journal of Soil Research, 29(2), 163-174 (In Persian with English abstract). https://doi.org/10.22092/ijsr.2015.102210
- Nath, A.J., & Lal, R. (2017). Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the North Appalachian region, USA, Pedosphere, 27, 172-176, https://doi.org/10.1016/S1002-0160(17)60301-1
- Nelson, D.W., & Sommers, L.E. (1982). Total carbon, organic carbon and organic matter. p. 101–129. In: Page A.L. (ed.), Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA Madison, WI.
- Salinas-Garcıa, J.R., Velazquez-Garcıa, J.D.J., Gallardo-Valdez, M., Dıaz-Mederos, P., Caballero-Hernandez, F., Tapia-Vargas, L.M., & Rosales-Robles, E. (2002). Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-Western Mexico. Soil and Tillage Research, 66, 143–152. https:// doi.org/10.1016/S0167-1987(02)00022-3
- Sawada, K., Inagaki, Y., Toyota, K., Kosaki, T., & Funakawa, S. (2017). Substrate-induced respiration responses to nitrogen and/or phosphorus additions in soils from different climatic and land use conditions, European Journal of Soil Biology, 83, 27-33, https://doi.org/10.1016/j.ejsobi.2017.10.002
- Seybold, C.A., & Herrick, J.E. (2001). Aggregate stability kit for soil quality assessments, Catena, 44, 37-45, https:// doi.org/10.1016/S0341-8162(00)00175-2
- Six, J., Conant, R., Paul, E., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155-176. https://doi.org/10.1023/A:1016125726789
- Six, J., & Paustian, K. (2014). Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 68, A4-A9. https://doi.org/10.1016/j.soilbio.2013.06.014
- Wang, X., Shan, K., Huang, P., Ma, M., & Wu, S. (2023). Response of soil aggregate stability to plant diversity loss along an inundation stress gradient in a reservoir riparian zone, Catena, 233, 107472, https://doi.org/10.1016/ j.catena.2023.107472
- Wang, J.G., Yang, W., Yu, B., Li, Z.X., Cai, C.F., & Ma, R.M. (2016). Estimating the influence of related soil properties on macro- and micro-aggregate stability in Ultisols of south-central China. Catena, 137, 545-553. https://doi.org/10.1016/j.catena.2015.11.001
- Weil, R.R., Islam, K.R., Stine, M.A., Gruver, J.B., & Samson-Liebig, S.E. (2003). Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. American Journal of Alternative Agriculture, 18, 3–17. https://doi.org/10.1079/AJAA200228
- Zhao, J., Chen, S., Hu, R., & Li, Y. (2017). Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil and Tillage Research, 167, 73-79. https://doi.org/10.1016/j.still.2016.11.007
- Zheng, F., Liu, X., Zhang, M., Li, S., Song, X., Wang, B., Wu, X., & Jan van Groenigen, K. (2023). Strong links between aggregate stability, soil carbon stocks and microbial community composition across management 107509, https://doi.org/10.1016/j.catena.2023.107509
|