[1] A. A. Ramezanianpour, A. Kazemian, M. A. Moghaddam, F. Moodi, A. M. Ramezanianpour, “Studying effects of low-reactivity GGBFS on chloride resistance of conventional and high strength concretes,” Materials and Structures, vol. 49, pp. 2597-2609, (2016). https://doi.org/10.1617/s11527-015-0670-y.
[2] A. A. Ramzanianpour, A. Zulfiqaransab, F. Bahmanzadeh, A. M. Ramzanianpour, “Assessment of high performance concrete containing mineral admixtures under sulfuric acid attack,” Amirkabir Journal of Civil Engineering, 50(1), pp.121-138. (2018). https://doi.org/10.22060/ceej.2016.696.
]3 [ R. F. M.و Bakker, About the cause of the resistance of blast furnace cement concrete to the alkali-silica reaction. In Proceedings, 5th International Conference on Alkali-Aggregate Reactions in Concrete (Cape Town, 1981), National Building Research Institute, CSIR, Pretoria (Vol. 5252, p. 29). (1981, March).
[4] S. A. Bernal, R. Mejia de Gutiérrez, A. L Pedraza, J. Provis, E. D. Rodriguez, S. Delvasto, “Effect of binder content on the performance of alkali-activated slag concretes,” Cement and Concrete Research, vol. 41, no. 1, pp. 1-8, (2011).
[5] C. Shi, P. Krivenko, D. Roy, “Alkali-Activated Cements and Concretes,” Taylor & Francis Group an informa business, p. 392, (2006). https://doi.org/10.1201/9781482266900.
[6] S. D. Wang, X. C. Pu, K. L. Scrivener, P. L. Pratt, “Alkali-activated slag cement and concrete: a review of properties and problems,” Advances in Cement Research, vol. 7, no. 27, pp. 93-102, (1995).
[7] Z. Yunsheng, S. Wei, L. Zongjin, “Composition design and microstructural characterization of calcined kaolin-based geopolymer cement,” Applied Clay Science, vol. 47,no. 3-4, pp. 271-275. (2010). doi.org/10.1016/j.clay.2009.11.002.
[8] F. N. Okoye, J. Durgaprasad, N. B. Singh, “Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete,” Construction and Building Materials, vol. 98, pp. 685-691, (2015). doi.org/10.1016/j.conbuildmat.2015.08.009.
[9] S. Ramasamy, K. Hussin, M. M. A. B. Abdullah, C. M. R. Ghazali, M. Binhussain, A. V. Sandu, “Interrelationship of kaolin, alkaline liquid ratio and strength of kaolin geopolymer,” IOP Conference Series: Materials Science and Engineering, vol. 133, No. 1, p. 012004, (2016). https://doi.org/10.1088/1757-899X/133/1/012004.
[10] K. Mermerdaş, S. Manguri, D. E. Nassani, S. M. Oleiwi, “Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar,” Engineering Science and Technology, an International Journal, vol. 20, no. 6, pp. 1642–1652, (2017). doi:10.1016/j.jestch.2017.11.009.
[11] J. Ahmad, “Experimental study of factors influencing compressive strength of geopolemer concrete,” International Research Journal of Engineering and Technology, vol. 4, no. 5, pp. 1306-1313, (2017).
[12] Y.J., Patel, N. Shah, “Study on Workability and Hardened Properties of Self Compacted Geopolymer Concrete Cured at Ambient Temperature,” Indian Journal of Science and Technology, vol. 11, no. 1, pp. 1-12, (2018). doi:10.17485/ijst/2018/v11i1/117698.
[13] A. C. Bhogayata, N. K. Arora, “Workability, strength, and durability of concrete containing recycled plastic fibers and styrene-butadiene rubber latex,” Construction and Building Materials, vol. 180, pp. 382-395, (2018). doi:10.1016/j.conbuildmat.2018.05.175.
[14] L. K., Aggarwal, P. C., Thapliyal, S. R. Karade, “Properties of polymer-modified mortars using epoxy and acrylic emulsions,” Construction and Building Materials, vol. 21, no. 2, pp. 379-383, (2007). doi:10.1016/j.conbuildmat.2005.08.007.
[15] A. R. Bagheri, S. Hashemi, “Influence of (SBR) Latex and Silica Fume on Properties and Performance of Cement- based Repair Concretes,” Journal of Civil Engineering and Managemen, vol. 26, no. 2, pp. 33-47, (2008).
[16] B. Liu, J. Shi, M. Sun, Z. He, H. Xu, J. Tan, “Mechanical and permeability properties of polymer-modified concrete using hydrophobic agent,” Journal of Building Engineering, vol. 31, no. 9, p. 101337, (2020). doi:10.1016/j.jobe.2020.101337.
[17] Y.K. Jo, “Adhesion in tension of polymer cement mortar by curing conditions using polymer dispersions as cement modifier,” Construction and Building Materials, vol. 242, p. 118134, (2020). doi:10.1016/j.conbuildmat.2020.118134.
[18] H. Chehrazi Sefiddashti, H. Madani, A. Saeedikia, “Investigation and comparsion of the properties of cement-based mixtures containing different type of polymers,” Sharif Journal, vol. 36.2, no. 3.2, pp.135-145, (2020).
[19] F, Matalkah, R, Aqel, A. Ababneh, “Enhancement of the mechanical properties of kaolin geopolymer using sodium hydroxide and calcium oxide,” Procedia Manufacturing, vol. 44, pp.164-171, (2020). doi.org/10.1016/j.promfg.2020.02.218.
[20] N. N. Greenwood, A., EarnShow, Chemistry of the Elements, 2nd Edition, Elsevier, November 11, (1997).
[21] ASTM C33/C33M-18, Standard Specification for Concrete Aggregates, ASTM Internationa West Conshohocken, PA, vol. 04.02, p.8, (2003).
[22] I. Luhar, S. Luhar, M. M. A. B. Abdullah, M. Nabiałek, A.V. Sandu, J. Szmidla, A. Jurczyńska, R. A. Razak, I. H. Aziz, N. H. Jamil, L. M., Deraman, “Assessment of the suitability of ceramic waste in geopolymer composites: An appraisal,” Materials (Basel), vol. 14, no. 12, p. 3279, (2021). doi:10.3390/ma14123279.
[23] I. A. Bello, O. Olalusi, F. Olutoge, “Effect of Salt Water on the Compressive Strength of Ceramic Powder Concrete,” American Journal of Engineering Research (AJER), vol. 6, no. 4, pp. 158-163, (2017).
[24] S. Yaseri, G. Hajiaghaei, F. Mohammadi, M. Mahdikhani, R. Farokhzad, “The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste,” Construction and Building Materials, vol. 157, pp. 534-545, (2017). doi: 10.1016/j.conbuildmat.2017.09.102.
[25] H, Peng, C, Cui, C. S. Cai, Y. Liu, Z. Liu, “Microstructure and microhardness property of the interface between a metakaolin/GGBFS-based geopolymer paste and granite aggregate,” Construction and Building Materials, vol. 221, pp. 263-273, (2019). doi:10.1016/j.conbuildmat.2019.06.090.
[26] ASTM C109 / C109M-20, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens),” ASTM International West Conshohocken, PA, vol. 04.01, p. 11, (2020).
[27] ASTM C293-08, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading),” Annual book of ASTM standards. West Conshohocken, PA, USA: American Society of Testing Materials, vol. 04.02, p. 3, (2010).
[28] American Society for Testing and Materials. Committee C-1 on Cement. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, 2013. https://www.wbdg.org/ffc/army-coe/standards/crd-c260.
[29] ASTM Committee C-09 on Concrete and Concrete Aggregates. Standard test method for time of setting of concrete mixtures by penetration resistance. ASTM international, (2008).
[30] ASTM C469/C469M-22, “Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression,” ASTM International: West Conshohocken, PA, USA, vol. 04.02, p. 6, (2022).
[31] M., Alizadeh Zolbin, S., Ghofrani, and A., Almasi, “Basics of Sample Preparation for Scanning Electron Microscope (SEM),” in "Specialized Quarterly of Iranian Laboratory Science", Iran, Tehran, Materials Engineering and Metallurgy, Materials and Energy Research Institute, (2013).
[32] M. Elchalakani, M.,Dong, A. Karrech, G. Li, M.S. Mohamed Ali, T. Xie, B. Yang, “Develiopment of Fly Ash-and Slag-Based Geopolymer Concrete with Calcium Carbonate or Microsilica,” Journal of Materials in Civil Engineering, vol. 30, no. 12, pp. 04018325-1 - 04018325-14, (2018). doi:10.1061/(ASCE)MT.1943-5533.0002527.
[33] M. Cyr, R. Idir, T. Poinot, “Properties of inorganic polymer (geopolymer) mortars made of glass cullet,” Journal of Materials Science, vol. 47, pp. 2782–2797, (2012). doi:10.1007/s10853-011-6107-2.
[34] R., Prasanna Venkatesan, and K.C., Pazhani, “Strength and durability properties of geopolymer concrete made with graulated blast furnace slag and black rice husk ash, KSCE Journal of civil engineering, vol. 20, no. 6, pp. 2384-2391, (2016). https://doi.org/10.1007/s12205-015-0564-0 .
[35] A. M. Neville, Properties of Concrete, Vol. 4. London: Longman, (1995).
[36] M. A, Yazdi, M, Liebscher, S, Hempel, J, Yang, V. Mechtcherine, “Correlation of microstructural and mechanical properties of geopolymers produced from fly ash and slag at room temperature,” Construction and Building materials, vol. 191, pp. 330-34, (2018).
[37] N, Jamali, A, Rezvani, H, Khosravi, E, Tohidlou, “On the Mechanical Behavior of Basalt Fiber/Epoxy Composites filled with silanized graphene oxide nanoplatelets,” polmer composites, vol. 39, pp. E2472-E2482, (2018).
[38] H. Khosravi, R. Eslami Farsani, H. Ebrahimnezhad Khaljiri, “An Experimental Study on Mechanical Properties of Epoxy/Basalt/Carbon Nanotube Composites under Tensile and Flexural Loadings,” Journal of Science and Technology of Composites, vol. 3, no. 2, pp. 187-194, (2016).
[39] M., Aryanpour, M. Amiri, “The Effects of High Temperatures on Concrete Performance based on Nanostructural Changes in Calcium Silicate Hydrate (C-S-H),” Concrete Research Quarterly Journal, vol. 12, no. 4, pp. 69-80, (2019).
[40] M. Amiri, & M. Aryanpour, “The Effect of High Temperatures on the Mechanical and Microstructural Properties of Geopolymer Concrete,” Amirkabir Journal of Civil Engineerin, vol. 52, no. 12, pp. 2987-3002, (2021).