- Adhikari, K., & Hartemink, A.E. (2017). Soil organic carbon increases under intensive agriculture in the Central Sands, Wisconsin, USA. Geoderma Regional, 10(1), 115–125. https://doi.org/10.1016/j.geodrs.2017.07.003
- Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations defined by their probability distributions. Bulletin of the Calcutta Mathematical Society,35, 99–109.
- Brungard, C.W., & Boettinger, J.L. (2010). Conditioned latin hypercube sampling: optimal sample size for digital soil mapping of arid rangelands in Utah, USA. p. 67-75. In: Digital Soil Mapping. Springer, Netherlands.
- Brus, D.J. (2019). Sampling for digital soil mapping: A tutorial supported by R scripts. Geoderma, 338(1), 464–480. https://doi.org/10.1016/j.geoderma.2018.07.036
- Hengl, T., Huvelink, G.B.M., & Stein, A. (2004). A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120, 75–93. https://doi.org/10.1016/j.geoderma.2003.08.018
- Hengl, T., Rossiter, D.G., & Stein, A. (2003). Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Australian Journal of Soil Research, 41(8), 1403-1422. https://doi.org/10.1071/SR03005
- Khan, A., Aitkenhead, M., Stark, C.R., & Ehsan Jorat, M. (2023). Optimal sampling using Conditioned Latin Hypercube for digital soil mapping: An approach using Bhattacharyya distance. Geoderma, 439(1), 116660. https://doi.org/10.1016/j.geoderma.2023.116660
- Kimble, J.M., Grossman, R.B., & Samson-Liebig, S.E. (2001). Methodology for sampling and preparation for soil carbon determination. p. 15–30. In: Lal, R., J.M. Kimble, R.F. Follett, and B.A. Stewart (eds.) Assessment methods for soil carbon, Lewis Publishers, Boca Raton.
- Lame, F.P.J., & Defize, P.R. (1993). Sampling of contaminated soil: Sampling error in relation to sample size and segregation. Environmental Science and Technology, 27(10), 2035–2044.
- Ma, T., Brus, D.J., Zhu, A.-X., Zhang, L., & Scholten, T. (2020). Comparison of conditioned Latin hypercube and feature space coverage sampling for predicting soil classes using simulation from soil maps. Geoderma, 370(1), 114366. https://doi.org/10.1016/j.geoderma.2020.114366
- Markert, B. (2007). Quality assurance of plant sampling and storage. 215-254. In: Quevauviller P (ed.) Qualilty Assurance in Environmental Monitoring: Sampling and Sample Preatreatment. Wiley-VCH, Verlag GmbH, Weinheim.
- Minasny, B., & McBratney, A.B. (2006). A Conditioned Latin Hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9), 1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009
- Ramirez-Lopez, L., Schmidt, K., Behrens, T., van Wesemael, B., Dematte, J.A., & Scholten, T. (2014). Sampling optimal calibration sets in soil infrared spectroscopy. Geoderma, 226(1), 140–150. https://doi.org/10.1016/ j.geoderma.2014.02.002
- Roudier, P., Beaudette, D.E., & Hewitt, A. (2012). A conditioned Latin hypercube sampling algorithm incorporating operational constraints. p. 227-231. In Minasny B, Malone B P, McBratney A B (eds.) Digital Soil Assessments and Beyond. CRC Press, London.
- Thomas, M., Odgers, N.P., Ringrose-Voase, A., Grealish, G., Glover, M., & Dowling, T. (2012). Soil survey design for management-scale digital soil mapping in a mountainous southern Philippine catchment. p. 233-238. In Minasny B, Malone B P, McBratney A B (eds.) Digital Soil Assessments and Beyond. CRC Press, London.
- Wadoux, A.M.J.C., & Brus, D.J. (2021). How to compare sampling designs for mapping? European Journal of Soil Science, 72(1), 35–46. https://doi.org/10.1111/ejss.12962
- We, X., & Ai, E. (2008). Top 10 algoritm in data mining. Knowledge Information System, 14, 1-37.
- Zhang, Y., Saurette, D.D., Easher, T.H., Ji, W., Adamchuk, V.I., & Biswas, A. (2022). Comparison of sampling designs for calibrating digital soil maps at multiple depths. Pedosphere, 32(4), 588–601. https://doi.org/10.1016/ S1002-0160(21)60055-3
- Yang, L., Li, X., Shi, J., Shen, F., Qi, F., Gao, B., Chen, Z., Chen, A.X., & Zhou, C. (2020). Evaluation of conditioned Latin hypercube sampling for soil mapping based on a machine learning method. Geoderma, 369, 114337. https://doi.org/10.1016/j.geoderma.2020.114337
- Yekom Consulting Engineers. (1988). Comprehensive studies on the revival and development of agriculture of the natural resources of the northern watershed of the Karun River.
|