- Ali, M. M., Mikhail, N. N. and Haq, M. S. (1978). A class of bivariate distributions including the bivariate logistic. Journal of Multivariate Analysis, 8, 405–412.
- Amini, M., Jabbari, H. and Borzadaran, G. R. M. (2011). Aspects of dependence in generalized Farlie-Gumbel-Morgenstern distributions. Communication in Statistics - Simulation and Computations, 40, 1192–1205.
- Arnold, B.C. and Ng, H. K. T. (2011). Flexible bivariate beta distributions. Journal of Multivariate Analysis, 102, 1194–1202.
- Bairamov, I. and Kotz, S. (2002). Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions. Metrika, 56, 55–72.
- Bairamov, I. G., Kotz, S. and Bekci, M. (2001). New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics. Journal of Applied Statistics, 28, 521–536.
- Becherini, A., Martina, M. L. and Marchi, M. (2013). Copula-based statistical analysis of environmental data. Environmentalmetrics, 24, 1–11.
- Celebioglu, S. (1995). Yeni bir copulalar ailesi, Arastirma Sempozyumu. 95, Program ve Bildiriler, Ankara, 152-153, 27–29 Kasim.
- Celebioglu, S. (1997). A way of generating comprehensive copulas. Journal of the Institute of Science and Technology, 10, 57–61.
- Chesneau, C. (2021a). A new two-dimensional relation copula inspiring a generalized version of the Farlie-Gumbel-Morgenstern copula. Research and Communications in Mathematics and Mathematical Sciences, 13, 99–128.
- Chesneau, C. (2021b). On new types of multivariate trigonometric copulas. AppliedMath, 1, 3–17.
- Chesneau, C. (2022). On a weighted version of the Gumbel-Barnett copula. Innovative Journal of Mathematics (IJM), 1, 1–13.
- Chesneau, C. (2023). Theoretical validation of new two-dimensional one-variable-power copulas. Axioms, 12, 392.
- Domma, F. and Giordano, S. (2012). A copula-based approach to account for dependence in stress-strength models. Statistical Papers, 54, 807–826.
- Durante, F. and Sempi, C. (2016). Principles of Copula Theory. CRS Press, Boca Raton.
- El Ktaibi, F., Bentoumi, R., Sottocornola, N. and Mesfiui, M. (2022). Bivariate copulas based on counter-monotonic shock method. Risks, 10, 202.
- Embrechts, P., Klüppelberg, C. and Mikosch, T. (2001). Modelling extremal events: for insurance and fiance (Vol. 33). Springer Science & Business Media.
- Izadkhah, S., Ahmadzade, H. and Amini, M. (2015). Further results for a general family of bivariate copulas. Communications in Statistics-Theory and Methods, 44, 3146–157.
- Jaworski, P. (2023). On copulas with a trapezoid support. Dependence Modeling, 11, 20230101.
- Joe, H. (2015) Dependence Modeling with Copulas. CRS Press, Boca Raton.
- Korkmaz, M. Ç. (2020). The unit generalized half normal distribution: A new bounded distribution with inference and application. UPB Scientifi Bulletin, Series A: Applied Mathematics and Physics, 82, 133–140.
- Korkmaz, M. Ç. and Chesneau, C. (2021). On the unit Burr-XII distribution with the quantile regression modeling and applications. Computational and Applied Mathematics, 40, 1–26.
- Martínez-Flórez, G., Lemonte, A. J., Moreno-Arenas, G. and Tovar-Falón, R. (2022). The bivariate unit-sinhnormal distribution and its related regression model. Mathematics, 10, 3125.
- Mazucheli, J., Menezes, A. F. B. and Dey, S. (2019). Unit-Gompertz distribution with applications. Statistica, 79, 25–43.
- Michimae, H. and Emura, T. (2022). Likelihood inference for copula models based on left truncated and competing risks data from field studies. Mathematics, 10, 2163.
- Mirhosseini, S. M., Amini, M. and Dolati, A. (2015). On a general structure of the bivariate FGM type distributions. Applications of Mathematics, 60, 91–108.
- Morgenstern, D. (1956). Einfache Beispiele zweidimensionaler Verteilungen. Mitteilungsblatt für Mathematische Statistik, 8, 234–235.
- Nadarajah, S., Shih, S.H. and Nagar, D. K. (2017). A new bivariate beta distribution. Statistics, 51, 455–474.
Nelsen, R. B. (2006). An Introduction to Copulas. 2nd ed. Springer Science+Business Media, Inc.: Berlin, Germany. R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria. Available at: https://www.R-project.org.
- Rodríguez-Lallena, J. A. and Úbeda-Flores, M. (2004). A new class of bivariate copulas. Statistics and Probability Letters, 66, 315–325.
- Shih, J.-H., Konno, Y., Chang, Y.-T. and Emura, T. (2022). Copula-based estimation methods for a common mean vector for bivariate meta-analyses. Symmetry, 14, 186.
- Sklar, A. (1959). Fonctions de repartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris, 8, 229–231.
- Susam, S. O. (2020a). Parameter estimation of some Archimedean copulas based on minimum Cramér-von-Mises distance. Journal of The Iranian Statistical Society, 19, 163–183.
- Susam, S. O. (2020b). A new family of Archimedean copula via trigonometric generator function. Gazi University Journal of Science, 33, 806–813.
- Taketomi, N., Yamamoto, K., Chesneau, C. and Emura, T. (2022). Parametric distributions for survival and reliability analyses, a review and historical sketch. Mathematics, 10, 3907.
- Yeh, C.-T., Liao, G.-Y. and Emura, T. (2023). Sensitivity analysis for survival prognostic prediction with gene selection: A copula method for dependent censoring. Biomedicines, 11, 797.
|