1- Ali, A., Shahzad, R., Khan, A.L., Halo, B.A., Al-Yahyai, R., Al-Harrasi, A., Al-Rawahi, A., & Lee, I.J. (2017). Endophytic bacterial diversity of Avicennia marina helps to confer resistance against salinity stress in Solanum lycopersicum. Journal of Plant Interactions, 12(1), 312–322. https://doi.org/10.1080/17429145.2017.1362051
3- Al-Yassin, A. (2005). Adverse effects of salinity on citrus. International Journal of Agriculture & Biology, 7(4), 668-680.
4- Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15.
5- Asada, K. (1994). Production and action of active oxygen species in photosynthetic tissues. Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, 77–104.
6- Atteya, A.M. (2003). Alteration of water relations and yield of corn genotypes in response to drought stress. Bulgarian. Journal of Plant Physiology, 29(1-2), 63–76.
8- Becana, M., Aparicio-Tejo, P., Irigoyen, J.J., & Sanchez-Diaz, M. (1986). Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiology, 82(4), 1169–1171.
9- Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11–18.
10- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.
11- Chance, B., & Maehly, AC. (1955). Assay of catalases and peroxidases. In: Colowick, S.P., Kaplan, N.O. (Eds.) Methods in Enzymology. Academic Press, New York, 764–775.
12- Del Rio, L. (2015). ROS and RNS in plant physiology: an overview. Journal of Experimental Botani, 66, 2827–2837.
13- Dhindsa, R.S., Plumb-Dhindsa, P.A.M.E.L.A., & Thorpe, T.A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93–101. https://doi.org/10.1093/jxb/32.1.93
14- Dodd, I.C., & Pérez-Alfocea, F. (2012). Microbial amelioration of crop salinity stress. Journal of Experimental Botany, 63(9), 3415–3428. https://doi.org/10.1093/jxb/ers033
15- Ennab, H.A. (2016). Effect of humic acid on growth and productivity of Egyptian lime trees (Citrus aurantifolia swingle) under salt stress conditions. Journal of Agriculture Research Kafr El-Sheikh Universisty, 42(4), 494–505.
16- Flewelling, A.J., Currie, J., Gray, C.A., & Johnson, J.A. (2015). Endophytes from marine macroalgae: promising sources of novel natural products. Current Science, 88–111.
17- Food and Agriculture Organization of the United Nations, FAO.org. (n.d.). Retrieved June 12. 2015.
18- García‐Sánchez, F., Syvertsen, J.P., Gimeno, V., Botía, P., & Perez‐Perez, J.G. (2007). Responses to flooding and drought stress by two citrus rootstock seedlings with different water‐use efficiency. Physiologia Plantarum, 130(4), 532–542. https://doi.org/10.1111/j.1399-3054.2007.00925.x
19- Gill, S.S., Anjum, N.A., Hasanuzzaman, M., Gill, R., Trivedi, D.K., Ahmad, I., Pereira, E., & Tuteja, N. (2013). Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry, 70, 204–212. https://doi.org/10.1016/j.plaphy.2013.05.032
20- Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B.A., & Ben-Hayyim, G. (1997). Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta, 203(4), 460–469. https://doi.org/10.1007/s004250050215
21- Halo, B.A., Khan, A.L., Waqas, M., Al-Harrasi, A., Hussain, J., Ali, L., Adnan, M., & Lee, I.J. (2015). Endophytic bacteria ( Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. Journal of Plant Interactions, 10(1), 117–125. https://doi.org/10.1080/17429145.2015.1033659
22- Hayat, S., Ali, B., Hasan, S.A., & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60(1), 33–41. https://doi.org/10.1016/j.envexpbot.2006.06.002
24- Hodges, D.M., DeLong, J.M., Forney, C.F., & Prange, R.K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604–611. https://doi.org/10.1007/s004250050524
25- Jogawat, A., Saha, S., Bakshi, M., Dayaman, V., Kumar, M., Dua, M., Varma, A., Oelmüller, R., Tuteja, N., & Johri, A.K. (2013). Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signaling & Behavior, 8(10), 26891. https://doi.org/10.4161/psb.26891
26- Joshi, R., Mangu, V.R., Bedre, R., Sanchez, L., Pilcher, W., Zandkarimi, H., & Baisakh, N. (2015). Salt adaptation mechanisms of halophytes: improvement of salt tolerance in crop plants, In Elucidation of abiotic stress signaling in plants. Springer, New York, NY, 243–279.
27- Kaya, M.D., Okçu, G., Atak, M., Cıkılı, Y., & Kolsarıcı, Ö. (2006). Seed treatments to overcome salt and drought stress during germination in sunflower ( Helianthus annuus L.). European Journal of Agronomy, 24(4), 291–295. https://doi.org/10.1016/j.eja.2005.08.001
28- Khan, A.L., Waqas, M., Asaf, S., Kamran, M., Shahzad, R., Bilal, S., Khan, M.A., Kang, S.M., Kim, Y.H., Yun, B.W., & Al-Rawahi, A. (2017). Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environmental and Experimental Botany, 133, 58–69. https://doi.org/10.1016/j.envexpbot.2016.09.009
29- Khan, A.L., Hamayun, M., Kang, S.M., Kim, Y.H., Jung, H.Y., Lee, J.H., & Lee, I.J. (2012). Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiology, 12(1), 1–14. https://doi.org/10.1186/1471-2180-12-3
30- Kochert, G. (1978). Carbohydrate determination by the phenol-sulfuric acid method. Handbook of phycological methods. Phycological and Biochemical Methods, 95. https://doi.org/10.1016/j.ab.2004.12.001
31- Krishna, G., Singh, B.K., Kim, E.K., Morya, V.K., & Ramteke, P.W. (2015). Progress in genetic engineering of peanut ( Arachis hypogaea L.) A review. Plant Biotechnology Journal, 13(2), 147–162. https://doi.org/10.1111/pbi.12339
32- Li, Y. (2008). Kinetics of the antioxidant response to salinity in the halophyte Limonium bicolor. Plant Soil Environent, 54(11), 493–497. https://doi.org/10.17221/434-PSE
33- MacArtain, P., Gill, C.I., Brooks, M., Campbell, R., & Rowland, I.R. (2007). Nutritional value of edible seaweeds. Nutrition Reviews, 65(12), 535–543. https://doi.org/10.1301/nr.2007.dec.535-543
34- Magbanua, Z.V., De Moraes, C.M., Brooks, T.D., Williams, W.P., & Luthe, D.S. (2007). Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus?. Molecular Plant-microbe Interactions, 20(6), 697–706. https://doi.org/10.1094/MPMI-20-6-0697
35- Meggio, F., Prinsi, B., Negri, A.S., Simone, Di Lorenzo, G., Lucchini, G., Pitacco, A., Failla, O., Scienza, A., Cocucci, M., & Espen, L. (2014). Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Australian Journal of Grape and Wine Research, 20(2), 310–323. https://doi.org/10.1111/ajgw.12071
36- Mišurcová, L., Buňka, F., Ambrožová, J.V., Machů, L., Samek, D., & Kráčmar, S. (2014). Amino acid composition of algal products and its contribution to RDI. Food Chemistry, 151, 120–125. https://doi.org/10.1016/j.foodchem.2013.11.040
37- Morgan, J.A. (1984). Interaction of water supply and N in wheat. Plant Physiology,76(1), 112–117.
38-Moustakas, N.K., Akoumianakis, K.A., & Passam, H.C. (2011). Patterns of dry biomass accumulation and nutrient uptake by okra (Abelmoschus esculentus (L.) Moench.) under different rates of nitrogen application. Australian Journal of Crop Science, 5(8), 993–1000.
41- Naveed, M., Mitter, B., Reichenauer, T.G., Wieczorek, K., & Sessitsch, A. (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany, 97, 30–39.
42- Pal, S., Singh, H.B., Farooqui, A., & Rakshit, A. (2015). Fungal biofertilizers in Indian agriculture: perception, demand and promotion. Journal of Eco-friendly Agriculture, 10(2), 101–113.
43- Peng, Z., Xin, L., & Bin-Gui, W. (2016). Secondary metabolites from the marine algal-derived endophytic fungi. Chemical Diversity and Biological Activity, 82(09/10), 832–842. https://doi.org/10.1055/s-0042-103496
44- Sadeghi, F., Samsampour, D., Seyahooei, M.A., Bagheri, A., & Soltani, J. (2020). Fungal endophytes alleviate drought-induced oxidative stress in mandarin ( Citrus reticulata L.): Toward regulating the ascorbate–glutathione cycle. Scientia Horticulturae, 261, 108991. https://doi.org/10.1016/j.scienta.2019.108991
45- Saravanakumar, D., & Samiyappan, R. (2007). ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut ( Arachis hypogea) plants. Journal of Applied Microbiology, 102(5), 1283–1292. https://doi.org/10.1111/j.1365-2672.2006.03179.x
46- Shukla, N., Awasthi, R.P., Rawat, L., & Kumar, J. (2012). Biochemical and physiological responses of rice ( Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry, 54, 78–88. https://doi.org/10.1016/j.plaphy.2012.02.001
47- Smith, I.K., Vierheller, T.L., & Thorne, C.A. (1988). Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Analytical Biochemistry, 175(2), 408–413. https://doi.org/10.1016/0003-2697(88)90564-7
49- Strobel, G., Daisy, B., Castillo, U., & Harper, J. (2004). Natural products from endophytic microorganisms. Journal of Natural Products, 67(2), 257–268. https://doi.org/10.1021/np030397v
50- Suryanarayanan, T.S., Venkatachalam, A., Thirunavukkarasu, N., Ravishankar, J.P., Doble, M., & Geetha, V. (2010). Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Botanica Marina, 53(5), 457-468. https://doi.org/10.1515/bot.2010.045
51- Verma, A., Malik, C.P., & Gupta, V.K. (2012). In vitro effects of brassinosteroids on the growth and antioxidant enzyme activities in groundnut. International Scholarly Research Notices, 1, 1-8. https://doi.org/10.5402/2012/356485
52- Volkmann, H., Imianovsky, U., Oliveira, J.L., & Sant'Anna, E.S. (2008). Cultivation of Arthrospira ( Spirulina platensis) in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile. Brazilian Journal of Microbiology, 39(1), 98–101. https://doi.org/10.1590%2FS1517-838220080001000022
53- Xie, S.X., Lu, X.P., Ni, Q., & Zhao, X.L. (2012). The effect of water stress on ABA, Jaand physiological characteristic of Citrus. In XII International Citrus Congress, 125.
54- Yaish, M.W., Antony, I., & Glick, B.R. (2015). Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree ( Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek, 107(6), 1519–1532. https://doi.org/10.1007/s10482-015-0445-zPMID:25860542
55- Yaish, M.W., & Kumar, P.P. (2015). Salt tolerance research in date palm tree ( Phoenix dactylifera L.), past, present, and future perspectives. Frontiers in Plant Science, 6, 348. https://doi.org/10.3389/fpls.2015.00348
56- Zhang, Y.P., & Nan, Z.B. (2007). Growth and anti‐oxidative systems changes in Elymus dahuricus is affected by Neotyphodium endophyte under contrasting water availability. Journal of Agronomy and Crop Science, 193(6), 377–386. https://doi.org/10.1111/j.1439-037X.2007.00279.x
|