- Alam, K., Iqbal, M.J., Blaschke, T., Qureshi, S., & Khan, G. (2010). Monitoring spatio-temporal variations in aerosols and aerosol–cloud interactions over Pakistan using MODIS data. Advances in Space Research, 46(9), 1162-1176. https://doi.org/10.1016/j.asr.2010.06.025
- Alonso-Montesinos, J., Martínez, F.R., Polo, J., Martín-Chivelet, N., & Batlles, F.J. (2020). Economic effect of dust particles on photovoltaic plant production. Energies, 13(23), 6376. https://doi.org/10.3390/en13236376
- Asadi Rahim-Begi, N., Zarrin, A., Modfidi, A., & Dadashi-Roudbari, A. (2022). Seasonal distribution analysis of extreme precipitation in Iran using AgERA5 dataset. Iranian Journal of Soil and Water Research, 52(11), 2723-2737. (In Persian). https://doi.org/10.22059/ijswr.2021.333263.669118
- Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., & Thépaut, J.N. (2021). The ERA5 global reanalysis: Preliminary extension to 1950. Quarterly Journal of the Royal Meteorological Society, 147(741), 4186-4227. https://doi.org/10.1002/qj.4174
- Moradi, H., Zangane, A.M., & Pourhashemi, S. (2019). Evaluation of the role of drought in frequency of dust in Khorasan Razavi province. (In Persian). https://doi.org/10.22034/jest.2019.10464
- Brown, D., de Sousa, K., & van Etten, J. (2023). ag5Tools: An R package for downloading and extracting agrometeorological data from the AgERA5 database. SoftwareX, 21, 101267. https://doi.org/10.1016/j.softx.2022.101267
- Caido, N.G., Ong, P.M., Rempillo, O., Galvez, M.C., & Vallar, E. (2022). Spatiotemporal analysis of MODIS aerosol optical depth data in the Philippines from 2010 to 2020. Atmosphere, 13(6), 939. https://doi.org/10.3390/ atmos13060939
- Chen, S., Liu, J., Wang, X., Zhao, S., Chen, J., Qiang, M., & Chen, F. (2021). Holocene dust storm variations over northern China: transition from a natural forcing to an anthropogenic forcing. Science Bulletin, 66(24), 2516-2527. https://doi.org/10.1016/j.scib.2021.08.008
- Dadashi-Roudbari, A. (2020). Analysis of spatiotemporal variations of vertical and horizontal patterns of aerosols and evaluation of its Climate feedback in Iran, Ph.D. Thesis Urban Climatology, Shahid Beheshti University, Tehran, Iran. (In Persian)
- Dadashi-Roudbari, A., Ahmadi, M., & Shakiba, A. (2020). Seasonal Study of dust deposition and fine particles (PM 2.5) in Iran Using MERRA-2 data. Iranian Journal of Geophysics (IJG), 13(4), 43-59.
- Dadashi-Roudbari, A., & Ahmadi, M. (2021). An assessment of change point and trend of diurnal variation of dust storms in Iran: a multi-instrumental approach from in situ, multi-satellite, and reanalysis dust product. Meteorology and Atmospheric Physics, 133, 1523-1544. https://doi.org/10.1007/s00703-021-00825-x
- Dar, M.A., Ahmed, R., Latif, M., & Azam, M. (2022). Climatology of dust storm frequency and its association with temperature and precipitation patterns over Pakistan. Natural Hazards, 110(1), 655-677. https://doi.org/10.1002/joc.5019
- Daufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences, 106(31), 12788-12793. https://doi.org/10.1073/pnas.0902080106
- Fallah Zazuli, M., Vafaeinezhad, A., Kheirkhah Zarkesh, M.M., & Ahmadi Dehka, F. (2014). Source routing of dust haze phenomenon in the west and southwest of Iran and its synoptic analysis by using remote sensing and GIS. Journal of RS and GIS for Natural Resources, 5(4), 61-78. (In Persian)
- Goudie, A.S., & Middleton, N.J. (2006). Desert dust in the global system. Springer Science & Business Media.
- Hamed, K.H., & Rao, A.R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1-4), 182-196. https://doi.org/10.1016/S0022-1694(97)00125-X
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., & Thépaut, J.N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. https://doi.org/10.1002/qj.3803
- Heydari, A., Zarrin, A., & Dadashi-Roudbari, A. (2023). Investigating the performance of the deterministic and probabilistic versions (multi-member ensemble) of the ERA5 dataset in estimating Iran's temperature. Researches in Earth Sciences, 14(4), 1-20. (In Persian)
- Jafari, M., Mesbahzadeh, T., Masoudi, R., Zehtabian, G., & Amouei Torkmahalleh, M. (2021). Dust storm surveying and detection using remote sensing data, wind tracing, and atmospheric thermodynamic conditions (case study: Isfahan Province, Iran). Air Quality, Atmosphere & Health, 14, 1301-1311. https://doi.org/10.1007/s11869-021-01021-x
- Jiao, D., Xu, N., Yang, F., & Xu, K. (2021). Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Scientific Reports, 11(1), 17956. https://doi.org/10.1038/s41598-021-97432-y
- Jin, Q., Wei, J., Lau, W.K., Pu, B., & Wang, C. (2021). Interactions of Asian mineral dust with Indian summer monsoon: Recent advances and challenges. Earth-Science Reviews, 215, 103562. https://doi.org/10.1016/j. earscirev.2021.103562
- Knoben, W.J., Freer, J.E., & Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-4331. https://doi.org/10.5194/ hess-23-4323-2019
- Koster, R.D., McCarty, W., Coy, L., Gelaro, R., Huang, , Merkova, D., & Wargan, K. (2016).MERRA-2 input observations: Summary and assessment.
- Li, Z., Lau, W.M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M.G., & Brasseur, G.P. (2016). Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54(4), 866-929. https://doi.org/10.1002/2015RG000500
- Liu, C., Yin, Z., He, Y., & Wang, L. (2022). Climatology of dust aerosols over the Jianghan Plain revealed with space-borne instruments and MERRA-2 reanalysis data during2006–2021. Remote Sensing, 14(17), 4414. https://doi.org/10.3390/rs14174414
- Middleton, N. (2019). Variability and trends in dust storm frequency on decadal timescales: Climatic drivers and human impacts. Geosciences, 9(6), 261. https://doi.org/10.3390/geosciences9060261
- Middleton, N., Kashani, S.S., Attarchi, S., Rahnama, M., & Mosalman, S.T. (2021). Synoptic causes and socio-economic consequences of a severe dust storm in the Middle East. Atmosphere, 12(11), 1435. https://doi.org/10.3390/atmos12111435
- Mukherjee, T., Vinoj, V., Midya, S.K., & Adhikary, B. (2020). Aerosol radiative impact on surface ozone during a heavy dust and biomass burning event over South Asia. Atmospheric Environment, 223, 117201. https://doi.org/10.1016/j.atmosenv.2019.117201
- Rushingabigwi, G., Nsengiyumva, P., Sibomana, L., Twizere, C., & Kalisa, W. (2020). Analysis of the atmospheric dust in Africa: The breathable dust's fine particulate matter PM2.5 in correlation with carbon monoxide. Atmospheric Environment, 224, 117319. https://doi.org/10.1016/j.atmosenv.2020.117319
- Sarkar, S., Chauhan, A., Kumar, R., & Singh, R.P. (2019). Impact of deadly dust storms (May 2018) on air quality, meteorological, and atmospheric parameters over the northern parts of India. GeoHealth, 3(3), 67-80. https://doi.org/10.1029/2018GH000170
- Shao, Y., Wyrwoll, K.H., Chappell, A., Huang, J., Lin, Z., McTainsh, G.H., & Yoon, S. (2011). Dust cycle: An emerging core theme in Earth system science. Aeolian Research, 2(4), 181-204. https://doi.org/10.1016/j. aeolia.2011.02.001
- Shi, L., Zhang, J., Yao, F., Zhang, D., & Guo, H. (2021). Drivers to dust emissions over dust belt from 1980 to 2018 and their variation in two global warming phases. Science of The Total Environment, 767, 144860. https://doi.org/10.1016/j.scitotenv.2020.144860
- Soltani, M.J., Motamedvaziri, B., Noroozi, A.A., Ahmadi, H., & Mosaffaei, J. (2021). Identifying and prioritizing the factors affecting the creation of dust in Hendijan City and providing management solutions by DPSIR framework. Watershed Engineering and Management, 13(2), 269-282. https://doi.org/10.22092/ijwmse. 2021.352406.1848
- Sujitha, P.R., Santra, P., Bera, A.K., Verma, M.K., & Rao, S.S. (2022). Detecting dust loads in the atmosphere over Thar desert by using MODIS and INSAT-3D data. Aeolian Research, 57, 100814. https://doi.org/10.1016/j.aeolia.2022.100814
- Sun, J., Ding, K., Lai, Z., & Huang, H. (2022). Global and regional variations and main drivers of aerosol loadings over land during 1980–2018. Remote Sensing, 14(4), 859. https://doi.org/10.3390/rs14040859
- Tariq, S., Nawaz, H., Ul-Haq, Z., & Mehmood, U. (2021). Investigating the relationship of aerosols with enhanced vegetation index and meteorological parameters over Pakistan. Atmospheric Pollution Research, 12(6), 101080. https://doi.org/10.1016/j.apr.2021.101080
- Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial Statistics and Models, 443-460. https://doi.org/10.1007/978-94-017-3048-8_23
- Wu, J., Kurosaki, Y., & Du, C. (2020). Evaluation of climatic and anthropogenic impacts on dust erodibility: A case study in Xilingol Grassland, China. Sustainability, 12(2), 629. https://doi.org/10.3390/su12020629
- Yu, C., Li, Z., & Blewitt, G. (2021). Global comparisons of ERA5 and the operational HRES tropospheric delay and water vapor products with GPS and MODIS. Earth and Space Science, 8(5), e2020EA001417. https://doi.org/10.1029/2020EA001417
- Zarrin, A., Salehabadi, N., Mofidi, A., & Dadashi-Roudbari, A.A. (2022). Investigation of Seasonal dust in northeastern Iran and numerical simulation of extreme dust events using WRF-CHEM model. Journal of the Earth and Space Physics, 48(2), 421-440. (In Persian). https://doi.org/10.22059/jesphys.2022.330319.1007361
|