مدلسازی و شبیهسازی نیروهای تماسی و اصطکاکی در بازوهای رباتیکی انعطافپذیر
علوم کاربردی و محاسباتی در مکانیک
مقاله 7 ، دوره 36، شماره 4 - شماره پیاپی 38 ، دی 1403، صفحه 111-138 اصل مقاله (3.78 M )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/jacsm.2024.88007.1256
نویسندگان
محمد احسان یوسف زاده کوهبنانی ؛ علی محمد شافعی*
دانشکده فنی و مهندسی، دانشگاه شهید باهنر، کرمان.
چکیده
در مقاله حاضر برخوردهای چندگانه برای سیستمهای رباتیکی حلقه باز دو بعدی (صفحه ای) که از n لینک الاستیک با مفاصل دورانی تشکیل شدهاند، مورد مطالعه قرار گرفته است. معادلات حرکت دینامیکی این سیستم توسط الگوریتم بازگشتی گیبس-اپل و مدلسازی پدیده برخورد-تماس در آن به شیوه منظم صورت گرفته است. برای مدلسازی ارتعاشات عرضی لینکها از تئوری تیر تیموشنکو استفاده شده است. همچنین برای بالا بردن دقت مدلسازی، اثرات ناشی از میرایی سازهای و میرایی هوا در نظر گرفته شده است. مفاصل بدون لقی و اصطکاک بوده، اما در محل برخوردِ لینکها با زمین، نیروی اصطکاک لحاظ شده است. حرکت سیستم دارای دو مرحله پرواز و برخورد است. معادلات دیفرانسیل سیستم در مرحله برخورد در برگیرنده ترمهای ناشی از نیروهای ویسکوالاستیک هستند که معادلات حرکت جدیدی را نتیجه میدهند. این معادلات دیفرانسیل جدید به دلیل ماهیت نیروی برخورد، بسیار سخت بوده و حل آنها در مدت زمان بسیار اندکِ برخورد تمهیدات خاصی را میطلبد. با توجه به زمان بسیار کوتاه برخورد، تشخیص دقیق لحظه برخورد از اهمیت بسزایی برخوردار است. برای این منظور ورود به فاز برخورد و خروج از آن با الگوریتم محاسباتی ویژهای که در این مقاله ارائه شده است، با دقت بسیار بالایی کنترل میشود. برای نمایش کارآیی و دقت برنامه توسعه داده شده، شبیهسازیهای کامپیوتری برای مطالعه رفتار دینامیکی یک سیستم رباتیکی سه لینکی انجام شده است. در پایان برای بررسی اثر مودشیپها بر روی تغییر شکل الاستیک لینکها، از چهار دسته مودشیپ متفاوت در شبیهسازیها استفاده شده و نتایج آنها با یکدیگر مقایسه شدهاند.
کلیدواژهها
شکل مود ؛ گیبس-اپل ؛ اصطکاک ؛ ربات الاستیک ؛ نیروهای تماسی
مراجع
[1] E. A. Alandoli, M. Sulaiman, M. Z. A. Rashid, H. N. M. Shah, and Z. Ismail, “A review study on flexible link manipulators,” Journal of Telecommunication, Electronic and Computer Engineering (JTEC) , vol. 8, no. 2, pp. 93-97, 2016.
[2] H. Geniele, R. V. Patel, and K. Khorasani, “End-point control of a flexible-link manipulator: theory and experiments,” IEEE Transactions on Control Systems Technology , vol. 5 , no. 6, pp. 556-570, 1997. https://doi.org/10.1109/87.641401
[3] T. Zebin, and M. S. Alam, “Dynamic modeling and fuzzy logic control of a two-link flexible manipulator using genetic optimization techniques,” In 2010 13th International Conference on Computer and Information Technology (ICCIT) , pp. 418-423m, 2010. https://doi.org/10.1109/ICCITECHN.2010.5723894
[4] A. M. Shafei, and M. H. Korayem, “Theoretical and experimental study of dynamic load‐carrying capacity for flexible robotic arms in point‐to‐point motion,” Optimal Control Applications and Methods , vol. 38, no. 6, pp. 963-972, 2017. https://doi.org/10.1002/oca.2302
[5] M. H. Korayem, A. M. Shafei, and S. F. Dehkordi, “Systematic modeling of a chain of N-flexible link manipulators connected by revolute–prismatic joints using recursive Gibbs-Appell formulation,” Archive of Applied Mechanics , vol. 84, no. 2, pp. 187-206, 2014. https://doi.org/10.1007/s00419-013-0793-y
[6] L. Su, Q. Hu, and L. Zhang, “Recursive decentralized control for trajectory tracking of flexible space manipulators,” IEEE Access , vol. 7, pp. 39192-39206, 2019. https://doi.org/10.1109/ACCESS.2019.2906565
[7] S. Erkaya, and İ. Uzmay, “Modeling and simulation of joint clearance effects on mechanisms having rigid and flexible links,” Journal of Mechanical Science and Technology , vol. 28, pp. 2979-2986, 2014. https://doi.org/10.1007/s12206-014-0705-2
[8] W. W. Armstrong, “Recursive Solution to the Equations of Motion of n-link Manipulator,” In Proc. Fifth World Congress on Theory of Machines and Mechanisms , Vol. 2, pp. 1343-1346, (1979).
[9] R. Featherstone, “The calculation of robot dynamics using articulated-body inertias,” The International Journal of Robotics Research , vol. 2 , no. 1, pp. 13-30, 1983. https://doi.org/10.1177/027836498300200102
[10] C. C. Chang, and S. T. Peng, “Impulsive motion of multibody systems,” Multibody System Dynamics , vol. 17, no. 1, pp. 47-70, 2007. https://doi.org/10.1007/s11044-007-9035-9
[11] Y. L. Hwang, “Recursive Newton–Euler formulation for flexible dynamic manufacturing analysis of open-loop robotic systems,” The International Journal of Advanced Manufacturing Technology , vol. 29, no. 5, pp 598-604, 2006. https://doi.org/10.1007/BF02729114
[12] A. Mohan, and S. K. Saha, “A recursive, numerically stable, and efficient simulation algorithm for serial robots,” Multibody System Dynamics , vol. 21, pp. 1-35, 2009. https://doi.org/10.1007/s11044-008-9122-6
[13] D. S. Bae, and E. J. Haug, “A recursive formulation for constrained mechanical system dynamics: Part i. open loop systems,” Journal of Structural Mechanics , vol. 15, no. 3, pp. 359-382, 1987. https://doi.org/10.1080/08905458708905124
[14] C. D. Zhang, and S. M. Song, “An efficient method for inverse dynamics of manipulators based on the virtual work principle,” Journal of Robotic Systems , vol. 10, no. 5, pp. 605-627, 1993. https://doi.org/10.1002/rob.4620100505
[15] K. Yamane, and L. Nakamura, “O (N) forward dynamics computation of open kinematic chains based on the principle of virtual work,” IEEE International Conference on Robotics and Automation, vol. 3, pp. 2824-2831, 2001. https://doi.org/10.1109/ROBOT.2001.933050
[16] H. R. Hertz, “Uber die Beruhrung fester elastischer Korper und Uber die Harte”, Berlin: Verhandlung des Vereins zur Beforderung des GewerbefleiBes, (1882).
[17] K. H. Hunt, and F. R. E. Crossley, “Coefficient of restitution interpreted as damping in Vibroimpact,” Journal of Applied Mechanics, vol. 42, no. 2, pp. 440-445, 1975. https://doi.org/10.1115/1.3423596
[18] R. G. Herbert, and D. C. McWhannell, “Shape and frequency composition of pulses from an impact pair,” Journal of Manufacturing Science and Engineering , vol. 99, no. 3, pp. 513-518, 1997. https://doi.org/10.1115/1.3439270
[19] T. W. Lee, and A. C. Wang, “On the dynamics of intermittent-motion mechanisms. Part 1: dynamic model and response,” Journal of Mechanical Desing , vol. 105, no. 3, pp. 534-540, 1983. https://doi.org/10.1115/1.3267392
[20] H. M. Lankarani, and P. E. Nikravesh, “A contact force model with hysteresis damping for impact analysis of multibody systems,” Journal of Mechanical Desing , vol. 112, no. 3, pp. 369-376, 1990. https://doi.org/10.1115/1.2912617
[21] P. Flores, M. Machado, M. T. Silva, and J. M. Martins, “On the continuous contact force models for soft materials in multibody dynamics,” Multibody system Dynamics , vol. 25, pp. 357-375, 2011. https://doi.org/10.1007/s11044-010-9237-4
[22] M. Gharib, and Y. Hurmuzlu, “A new contact force model for low coefficient of restitution impact”, Journal of Applied Mechanics ,” vol. 79, no. 6, pp. 064506, 2012. https://doi.org/10.1115/1.4006494
[23] S. Hu, and X. Guo, “A dissipative contact force model for impact analysis in multibody dynamics. Multibody System Dynamics ,” vol. 35, pp. 131-151, 2015. https://doi.org/10.1007/s11044-015-9453-z
[24] J. Alves, N. Peixinho, M. T. da Silva, P. Flores, and H. M. Lankarani, “A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids,” Mechanism and Machine Theory ,” vol. 85, pp. 172-188, 2015. https://doi.org/10.1016/j.mechmachtheory.2014.11.020
[25] Xu. Zhang, and Xi. Zhang, “A comparative study of planar 3-RRR and 4-RRR mechanisms with joint clearances,” Robotics and Computer-Integrated Manufacturing , vol. 40, pp. 24-33, 2016. https://doi.org/10.1016/j.rcim.2015.09.005
[26] J. Lee, E. Bakolas, and L. Sentis, “Trajectory Generation for Robotic Systems with Contact Force Constraints,” In 2019 American Control Conference (ACC) , pp. 671-678, 2019. https://doi.org/10.23919/ACC.2019.8815154
[27] L. Yang, X. Zhang, and Y. Huang, “Dynamic analysis of open-loop mechanisms with multiple spatial revolute clearance joints,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science , vol. 233, no. 2, pp. 593-610, 2019. https://doi.org/10.1177/0954406218757810
[28] A. M. Shafei, and H. R. Shafei, “Considering Link Flexibility in the Dynamic Synthesis of Closed-Loop Mechanisms: A General Approach,” Journal of Vibration and Acoustics , vol. 142, no. 2, pp. 021004, 2019. https://doi.org/10.1115/1.4045457
[29] Z. A. Khan, V. Chacko, and H. Nazir, “A review of friction models in interacting joints for durability design,” Friction , vol. 5, pp. 1-22, 2017. https://doi.org/10.1007/s40544-017-0143-0
[30] E. Pennestrì, V. Rossi, P. Salvini, and P. P. Valentini, “Review and comparison of dry friction force models,” Nonlinear Dynamics, vol. 83, pp. 1785-1801, 2016. https://doi.org/10.1007/s11071-015-2485-3
[31] H. Olsson, K. J. Åström, C. C. de Wit, M. Gäfvert, and P. Lischinsky, “Friction models and friction compensation,” European Journal of Control , vol. 4, no. 3, pp. 176-195, 1998. https://doi.org/10.1016/S0947-3580(98)70113-X
[32] C. A. Coulomb, “Théorie des machines simples en ayant égard au frottement de leurs parties et à la roideur des cordages,” Bachelier , 1821.
[33] A. Morin, “New friction experiments carried out at Metz in 1831–1833 : French Roy,” 1833.
[34] R. Stribeck, “Die wesentlichen eigenschaften der gleit-und rollenlager,” Zeitschrift des Vereines Deutscher Ingenieure , vol. 46, pp. 1341-1348, 1902
[35] L. C. Bo, and D. Pavelescu, “The friction-speed relation and its influence on the critical velocity of stick-slip motion,” Wear , vol. 82, no. 3, pp. 277-289, 1982. https://doi.org/10.1016/0043-1648(82)90223-X
[36] D. Karnopp, “Computer simulation of stick-slip friction in mechanical dynamic systems,” Journal of Dynamic Systems, Measurement, and Control , vol. 107, no. 1, pp. 100-103, 1985. https://doi.org/10.1115/1.3140698
[37] B. Armstrong-Hélouvry, P. Dupont, and C. C. de Wit, “A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica , vol. 30, no. 7, pp. 1083-1138, 1994. https://doi.org/10.1016/0005-1098(94)90209-7
[38] D. C. Threlfall, “The inclusion of Coulomb friction in mechanisms programs with particular reference to DRAM au programme DRAM,” Mechanism and Machine Theory , vol. 13, no. 4, pp. 475-483, 1978. https://doi.org/10.1016/0094-114X(78)90020-4
[39] J. A. C. Ambrósio, “Impact of rigid and flexible multibody systems: deformation description and contact models,” In Virtual Nonlinear Multibody Systems , pp. 57-81, Springer, Dordrecht, 2003. https://doi.org/10.1007/978-94-010-0203-5_4
[40] E. T. Whittaker, “A treatise on the analytical dynamics of particles and rigid bodies,” Cambridge University Press , 1988. https://doi.org/10.1017/CBO9780511608797
[41] O. A. Bauchau, and C. Ju, “Modeling friction phenomena in flexible multibody dynamics,” Computer Methods in Applied Mechanics and Engineering , vol. 195, pp. 50-51, 2006. https://doi.org/10.1016/j.cma.2005.08.013
[42] C. Pereira, J. Ambrósio, and A. Ramalho, “Implications of contact parameters on the dynamics of chain drives,” Key Engineering Materials , vol. 572, pp. 367-370, 2014. https://doi.org/10.4028/www.scientific.net/KEM.572.367
[43] E. Corral, F. Marques, M. J. G. García, P. Flores, and J. C. García-Prada, “Passive walking biped model with dissipative contact and friction forces,” European Conference on Mechanism Science , pp. 35-42, 2018. https://doi.org/10.1007/978-3-319-98020-1_5
[44] Z. Qian, D. Zhang, and C. Jin, “A regularized approach for frictional impact dynamics of flexible multi-link manipulator arms considering the dynamic stiffening effect,” Multibody System Dynamics , vol. 43, no. 3, pp. 229-255, 2018. https://doi.org/10.1007/s11044-017-9589-0
[45] M. Taheri, and H. Faraji, “Investigation of the Influence of Input Parameters of the HK Friction Model on the Critical Force and Time in the Displacement of a Gold Nanoparticle,” Journal of Applied Computational Science in Mechanics , vol. 35, no. 4, pp. 1-16, 2023. (In Persian) httsp://doi.org/10.22067/jacsm.2023.80792.1160
[46] M. Taheri, and Z. Eghdami, “Using Novel Friction Models to Investigate the Mechanical Properties of Cancerous Liver Tissue,” Journal of Applied Computational Science in Mechanics, vol. 36, no. 37, pp. 107-122, 2024. (In Persian) httsp://doi.org/10.22067/JACSM.2024.87206.1245
[47] B. Dadashzadeh, S. A. Mostafavi, and A. Allahverdizadeh, “Dynamic Modeling and Optimal Step Planning for a Real Bipedal Robot Based on the Spring-Loaded Inverted Pendulum Model and Compass Gait,” Journal of Applied Computational Science in Mechanics , vol. 30, no. 1, pp. 31-50, 2018. (In Persian) https://doi.org/10.22067/fum-mech.v30i1.67602
[48] S. N. Nabavi, and J. Enferadi, “Implementation of the Gibbs-Appell Method in the Dynamic Analysis of a New Hybrid Serial-Parallel PP-(3RSS-PS) Robot,” Journal of Applied Computational Science in Mechanics , vol. 36, no. 1, pp. 77-92, 2024. (In Persian) https://doi.org/10.22067/jacsm.2023.83429.1193
[49] S. M. Vardi-Koolaee, M. Bamdad, and B. Fathi, “Investigation of the Effects of Hinged Joint Clearances on the Kinematic Behavior of a 3RPR Planar Parallel Robot,” Journal of Applied Computational Science in Mechanics , vol. 31, no. 1, pp. 39-52, 2020. (In Persian) https://doi.org/10.22067/fum-mech.v31i1.85234
[50] N. Jafarzadeh, M. Zehsaz, and M. Sadeghi, “Vibration-based Fault Diagnosis of Cylindrical Shells Based on Mode Shape Curvature,” Journal of Applied Computational Science in Mechanics , vol. 30, no. 1, pp. 119-128, 2018. (In Persian) https://doi.org/10.22067/fum-mech.v30i1.58045
[51] J. Safehian, and A. R. Akbarzadeh, “Kinematics and Dynamics of a Snake-like Robot in Worm-like Movement on an Inclined Surface,” Journal of Applied Computational Science in Mechanics , vol. 24, no. 1, pp. 71-86, 2012. (In Persian) https://doi.org/10.22067/fum-mech.v24i1.21493
[52] M. Aalipour, A. Mokhtarian, and H. Karimpour, “Nonlinear Motion Control of a Spherical Robot on an Inclined Surface Based on Feedback Linearization Method,” Journal of Applied Computational Science in Mechanics , vol. 31, no. 2, pp. 91-104, 2020. (In Persian) https://doi.org/10.22067/fum-mech.v31i2.74433
[53] L. Skrinjar, J. Slavič, and M. Boltežar, “A review of continuous contact-force models in multibody dynamics,” International Journal of Mechanical Sciences , vol. 145, pp. 171-187, 2018. https://doi.org/10.1016/j.ijmecsci.2018.07.010
[54] M. Ahmadizadeh, A. M. Shafei, and M. Fooladi, “A recursive algorithm for dynamics of multiple frictionless impact-contacts in open-loop robotic mechanisms,” Mechanism and Machine Theory , vol. 146, pp. 103745, 2020. https://doi.org/10.1016/j.mechmachtheory.2019.103745
[55] F. Marques, P. Flores, J. P. Claro, and H. M. Lankarani, “A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems,” Nonlinear Dynamics , vol. 86, pp. 1407-1443, 2016. https://doi.org/10.1007/s11071-016-2999-3
[56] M. W. D. White, and G. R. Heppler, “Vibration modes and frequencies of Timoshenko beams with attached rigid bodies,” Journal of Applied Mechanics , vol. 62, no. 1, pp. 193-199, 1995. https://doi.org/10.1115/1.2895902
آمار
تعداد مشاهده مقاله: 453
تعداد دریافت فایل اصل مقاله: 209