تأثیر الیاف پلی پروپیلن در مقابل ماکرو بارچیپ بر مشخصات بتن پلاستیک
مهندسی عمران فردوسی
دوره 37، شماره 2 - شماره پیاپی 46 ، مرداد 1403، صفحه 99-122 اصل مقاله (1.73 M )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/jfcei.2024.80952.1215
نویسندگان
سید حسین قاسم زاده موسوی نژاد* ؛ آرین درویشعلی نژاد ؛ مسعود صابر بازکیاگورابی
گروه مهندسی عمران، دانشکدۀ فنی، دانشگاه گیلان، رشت، ایران.
چکیده
بتن پلاستیکی به طور گسترده در ساخت دیوارهای بریده سدهای خاکی استفاده می شود. خواص مکانیکی و رفتار مصالح به کار رفته در ساخت چنین دیوارهایی به دلیل بارهای وارده بر پی و ضد آب بودن دیوار از اهمیّت ویژه ای برخوردار است. انرژی شکست مهم ترین عامل تأثیرگذار در توصیف رفتار شکست در نظر گرفته می شود که در واقع مکانیسم ترک خوردگی بتن را توصیف می کند. این تحقیق با هدف بررسی اثر افزودن الیاف پلی پروپیلن 12 میلی متری و الیاف ماکروبارچیپ 30 میلی متری برای بتن پلاستیکی تقویتکننده دیوارهای بریده انجام شده است. خواص مورد مطالعه عبارتند از: آزمایش تعیین اسلامپ مخلوط بتن، آزمایش اولتراسونیک بتن، مدول الاستیسیته، منحنی تنش-کرنش، نفوذپذیری بتن، میکروسکوپ الکترونی روبشی (SEM) و مقاومت فشاری در سن 28 روزه. نتایج به دستآمده از مخلوط های بتن تازه نشان می دهد که وزن مخصوص و اسلامپ برای هر دو نوع الیاف کاهش می یابد. بیشترین کاهش در الیاف پلی پروپیلن52.27% بود. نتایج آزمایش اولتراسونیک نشان دهندۀ کاهش 9.47% سرعت موج برای الیاف پلی پروپیلن و 14.17% برای الیاف های ماکرو است. بر اساس نتایج مقاومت فشاری 28 روزه، افزودن الیاف باعث کاهش مقاومت فشاری شده است. بیش ترین مقدار برای الیاف پلی پروپیلن 27.20% و برای الیاف ماکروبارچیپ 23.32% بود. با توجه به نتایج مدول الاستیسیته، افزودن الیاف این ویژگی بتن پلاستیک را کاهش می دهد به طوری که بالاترین مقدار برای الیاف پلی پروپیلن 16.98% و برای الیاف ماکروبارچیپ 24.70% است.
کلیدواژهها
الیاف پلیپروپیلن ؛ الیاف ماکرو ؛ بتن پلاستیک ؛ نفوذپذیری ؛ سرعت امواج فرا صوت
مراجع
[1] I. Padron, R. F, Zollo, “Effect of Synthetic Fibers on Volume Stability and Cracking of Portland Cement Concrete and Mortar,” ACI Materials Journal , vol. 87, no. 4, pp. 327-332, (1990).
[2] Y. Ma, M. Tan, K. Wu, “Effect of Different Geometric Polypropylene Fibers on Plastic Shrinkage Cracking of Cement Mortars,” Materials and Structures , vol. 35, no. 3, pp. 165-169, (2002).
[3] P. Balaguru, “Contribution of Fibers to Crack Reduction of Cement Composites During the Initial and Final Setting Period,” ACI Materials Journal , vol. 91, no. 3, pp. 280-288, (1994).
[4] P. J., Uno, Plastic shrinkage cracking and evaporation formulas. ACI Materials Journal , 95 , pp. 365-375, (1998).
[5] A., Palos, N. A., D’Souza, C. T., Snively, & R. F. Reidy, Modification of cement mortar with recycled ABS. Cement and Concrete Research, 31(7), pp.1003–1007, (2001). doi:10.1016/s0008-8846(01)00531-2.
[6] A. M. Alhozaimy; P. Soroushian; F. Mirza, “Mechanical Properties of Polypropylene Fiber Reinforced Concrete and the Effects of Pozzolanic Materials,” Cement & Concrete Composites , vol. 18, no. 2, pp. 85-92, (1996).
[7] E. S. Bernard, “Durability of Cracked Fibre Reinforced Shotcrete,” 1st ed, In Shotcrete: More Engineering Developments , p. 8, (2004).
[8] Z. Bazant, P. E. Becq-Giraudon, “Statistical Prediction of Fracture Parameters of Concrete and Implications for Choice of Testing Standard,” Cement and Concrete Research , vol. 32, no. 4, pp. 529-556, (2002).
[9] M. R. Teklo, R., Murshid, “The Effect of Polypropylene Fibers on the Energy Absorption of Fiber Concrete,” 4th National Congress of Civil Engineering, University of Tehran , Iran, May 8, (2008).
[10] A. Tahershamsi, A. Bakhtiary, N. Binazadeh, “Effects of Clay Mineral Type and Content on Compressive Strength of Plastic Concrete,” Journal of Mining Engineering , vol. 4, no. 7, pp. 35-42, (2009).
[11] S. P. Singh; A. P Singh; V. Bajaj, “Strength and flexural toughness of concrete reinforced with steel-polypropylene hybrid fibres,” Asian Journal of Civil Engineering (Building and Housing) , vol. 11, no. 4, pp. 495-507, (2010).
[12] M. H. Madrasi, H. Rahnama, A. Farahani, “Effect of Sea Water on the Properties of Concrete with Polypropylene Fibers,” 6th National Civil Engineering Congress, Semnan University , Iran, April 27, (2011).
[13] S. Kazemian, S. Ghareh, L. Torkanloo, “To Investigation of Plastic Concrete Bentonite Changes on its Physical Properties,” Procedia Engineering , vol. 145, pp. 1080-1087, (2016).
[14] M. Mehmandoost Kotlar, A. Akhtarpour, M. Salari, “A Strain Hardening/Softening Elasto-Plastic Constitutive Model for Plastic Concrete Materials,” Ferdowsi Civil Engineering , vol. 30, no. 1, pp. 79-92, (2018).
[15] H. Bahmani, D. Mostofinejad, “Mechanical Properties of Ultra High Performance Concrete Reinforced by Polypropylene Fibers and Synthetic Macro Fibers (Barchip),” Concrete Research Quarely Journal , vol. 12, no. 1, pp. 15-26, (2019).
[16] O. Afzali-Naniz; A. Doostmohammadi; J. Sobhani, “The Effects of Micro and Macro Synthetic Fibers on Drying Shrinkage of Restrained Concrete,” Journal of Concrete Structures and Materials , vol. 4, no. 2, 114-129, (2019).
[17] H. Amini, “Investigating the Effect of Macro Polymer Fibers on the Mechanical Properties of Traverse Concrete,” 6th International Conference on Recent Advances in Railway Engineering, Tehran , Iran, June 9, (2019).
[18] A. Bagheri, M. Gorgani Firoozjah, A. Jamali, H. Zanganeh, “Comparison of the Performance of Macro-Polymeric Fibers and Steel Fibers in Controlling Drying Shrinkage Cracks of Concrete,” Sharif Journal of Civil Engineering , vol. 36.2, no. 1.1, pp. 11-19, (2020) .
[19] S. A. Eshta, A. Salighehzadeh, “Laboratory Study of Mechanical Properties and Durability of Concrete Containing Silica fume and Barchip Fibers,” Analysis of Structure and Earthquake , vol. 16, no. 4, pp. 33-43, (2020).
[20] A. KhodaBandehLou, A. Asadi Zeynali, “Optimizing the Consumption of Intertwined Macro Synthetic Fibers to Improve the Mechanical Properties of Concrete,” Journal of Structural and Construction Engineering , vol. 8, no. 10, pp. 206-224, (2021).
[21] M. Razzaghian Ghadikolaee, M. Mirzaei, A. Habibnejad Korayem, “Experimental Studies of Workability, Mechanical Behavior and Durability Properties of Basalt-Polypropylene Fibers-Reinforced Cementitious Mortar,” Modares Civil Engineering journal (MCEJ); vol. 21, no. 1, pp.87-102, (2021).
[22] R. Rostami, M. Zarrebini, K. Sanginabadi, D. Mostofinejad, S. M. Abtahi, H. Fashandi, “The Effect of Hydrophilicity of Macro-Polypropylene Fibers on Mechanical Properties of Fiber Reinforced Concrete,” Modares Civil Engineering journal(MCEJ), vol. 21, no. 4, pp. 89-98, (2021).
[23] G. Pachideh, M. Gholhaki, “An Experimental Study on the Effects of Adding Steel and Polypropylene Fibers to Concrete on its Resistance After Different Temperatures,” Journal of Testing and Evaluation , vol. 47, no. 2, pp. 1606-1620, (2019).
[24] G. Pachideh, M., Gholhaki, “An Experimental Study on the Performance of Fine-Grained Concrete Incorporating Recycled Steel Spring Exposed to Acidic Conditions,” Advances in Structural Engineering , vol. 23, no. 11, pp. 2458-2470, (2020).
[25] M. Khalily, V. Saberi, H. Saberi, V. Mansouri, A. Sadeghi, G. Pachideh, “An Experimental Study on the Effect of High Temperatures on Performance of the Plastic Lightweight Concrete Containing Steel, Polypropylene and Glass Fibers,” Journal of Structural and Construction Engineering (JSCE) , vol. 8, no. 12, pp. 284-307, (2022).
[26] M. Esmaeeli, S. Ghahari, “Laboratory Study on the Effect of Poly-Propylene Fiber Reinforced Concrete for Application in Sleeper,” Modares Civil Engineering journal (MCEJ); vol. 12, no. 3, pp. 91-101, (2012).
[27] C. Jiang, K, Fan, F. Wu, D. Chen, “Experimental Study on the Mechanical Properties and Microstructure of Chopped Basalt Fibre Reinforced Concrete,” Materials & Design , vol. 58, pp. 187-193, (2014).
[28] B. Chen, J. Liu, “Contribution of Hybrid Fibers on the Properties of the High-Strength Lightweight Concrete Having Good Workability,” Cement and Concrete Research , vol. 35, pp. 913-917, (2005).
[29] Y. Mohammadi, F. Seifollahi, “The Effect of Nano-Silica and Polypropylene Fibers on Mechanical Properties and Durability of Normal and Light Weight Concretes,” Modares Civil Engineering journal (MCEJ); vol. 17, no. 4, pp. 187-198, (2017).
[30] D. A. Fanella, A. E. Naaman, “Stress-Strain Properties of Fiber Reinforced Mortar in Compression,” In Journal Proceedings , vol. 82, no. 4, pp. 475-483, (1985).
[31] ASTM D75/D75M-19, “Standard Practice for Sampling Aggregates,” Annual book of ASTM Standards , vol. 04.03, p. 7,West Conshohocken, PA, USA: American Society of Testing Materials, (2019).
[32] ASTM C136-06, “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” Annual book of ASTM Standards , vol. 04.02, p. 5,West Conshohocken, PA, USA: American Society of Testing Materials, (2015).
[33] ASTM D2419-14, “Standard test method for sand equivalent value of soils and fine aggregate,” Annual book of ASTM Standards , vol. 04.03, p. 10 West Conshohocken, PA, USA: American Society of Testing Materials, (2022).
[34] ASTM C88-13, “Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate,” Annual book of ASTM standards , vol. 04.02, p. 5, West Conshohocken, PA, USA: American Society of Testing Materials, (2022).
[35] ASTM C151-05, “Standard Test Method for Autoclave Expansion of Hydraulic Cement,” Annual book of ASTM Standards , vol. 04.01, p. 3,West Conshohocken, PA, USA: American Society of Testing Materials, (2010).
[36] ASTM C535-16, “Standard Test Method for Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine,” Annual book of ASTM standards , vol. 04.02, p.3, West Conshohocken, PA, USA: American Society of Testing Materials, (2016).
[37] ASTM C127-15, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate,” Annual book of ASTM standards ., vol. 04.02, p. 5, West Conshohocken, PA, USA: American Society of Testing Materials, (2016).
[38] ASTM C128-15, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate,” Annual book of ASTM standards , vol. 04.02, p. 6, West Conshohocken, PA, USA: American Society of Testing Materials, (2016).
[39] www.Masalehshop.com
[40] https://soufiancement.com
[41] http://www.meisoon.com/fa/pages/204
[42] ASTM C12-22a, “Standard Practice for Installing Vitrified Clay Pipe Lines,” Annual Book of ASTM Standards , vol. 04.05, p. 9, West Conshohocken, PA, USA: American Society of Testing Materials, (2022).
[43] ASTM C125-21a, “Standard Terminology Relating to Concrete and Concrete Aggregates,” Annual Book of ASTM Standards, vol. 04.02, p. 9, West Conshohocken, PA, USA: American Society of Testing Materials, (2021).
[44] R. N., Ratu, “Development of Polypropylene Fiber as Concrete Reinforcing Fiber,”, University of British Columbia , (2016).
[45] A.J. Majumdar; R.W. Nurse, Glass fibre reinforced cement, 15(2-3), pp. 107–127. (1974). doi:10.1016/0025-5416(74)90043-3.
[46] ASTM C597-22, “Standard Test Method for Ultrasonic Pulse Velocity Through Concrete,” Annual Book of ASTM Standards, vol. 04.02, p. 4, West Conshohocken, PA, USA: American Society of Testing Materials, (2016).
[47] R., Jones, Testing of concrete by ultrasonic-pulse technique. In Highway Research Board Proceedings, Vol. 32, (1953).
[48] ASTM D4832-16e1, “Standard Test Method for Preparation and Testing of Controlled Low Strength Material (CLSM) Test Cylinders,” Annual Book of ASTM Standards , vol. 04.08, p. 6, West Conshohocken, PA, USA: American Society of Testing Materials, (2018).
[49] ASTM C469/C469M-22, “Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression,” Annual book of ASTM standards , vol. 04.02, p.6, West Conshohocken, PA, USA: American Society of Testing Materials, (2022).
[50] CRD-C48-92, “Standard Test Method for Water Permeability of Concrete, U.S,” Army Corps of Engineers (USACE) , (1992).
[51] F. Moodi, A. Ramezanianpor, F. Farhadian, P. Dashti, “Durability of Cementitious and Geopolymer Coating Mortars Against Sulfuric Acid Attack,” Amirkabir Journal of Civil Engineering , vol. 53, no. 9, pp. 3693-3707, (2021).
آمار
تعداد مشاهده مقاله: 312
تعداد دریافت فایل اصل مقاله: 126