- Adobor, H. (2020). Supply chain resilience: an adaptive cycle approach. The International Journal of Logistics Management. DOI:10.1108/IJLM-01-2020-0019.
- Ajjur, S. B., & Baalousha, H. M. (2020). Formulation of Indicators for Sustainable Groundwater Development in Qatar. 12th International Exergy, Energy and Environment Symposium (IEEES-12). https://www.researchgate.net/publication/349310278_Formulation_of_Indicators_for_Sustainable_Groundwater_Development_in_Qatar
- Allen, D. M., Mackie, D. C., & Wei, M. J. H. J. (2004). Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada.Hydrogeology Journal, 12(3), 270-290. doi:10.1007/s10040-003-0261-9
- Behyari, M., Jabari, A., & Alizadeh, A. (2020). Monitoring of buried faults and their role on the groundwater flow in the Urmia plain. Hydrogeology, 5(1), 98-109. DOI:22034/HYDRO.2020.10456.
- Biggs, R., Gordon, L., Raudsepp-Hearne, C., Schlüter, M., & Walker, B. (2015). Principle 3–Manage slow variables and feedbacks. Principles for building resilience: Sustaining ecosystem services in social-ecological systems, 105-141. https://www.stockholmresilience.org/publications/ -manage-slow-variables-and-feedbacks.html.
- Bishop, J. M., Glenn, C. R., Amato, D. W., & Dulai, H. (2017). Effect of land use and groundwater flow path on submarine groundwater discharge nutrient flux. Journal of Hydrology: Regional Studies, 11, 194-218, doi:10.1016/j.ejrh.2015.10.008.
- Blomquist, W. (2020). Beneath the surface: complexities and groundwater policy-making. Oxford Review of Economic Policy, 36(1), 154-170. doi:10.1093/oxrep/grz033.
- Bouchet, L., Thoms, M. C., & Parsons, M. (2019). Groundwater as a social-ecological system: A framework for managing groundwater in Pacific Small Island Developing States. Groundwater for Sustainable Development, 8, 579-589. doi 10.1016/j.gsd.2019.02.008.
- Boulton, A. J., & Hancock, P. J. (2006). Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. australian Journal of Botany, 54(2), 133-144. https://www.publish.csiro.au/bt/BT05074.
- Bresci, E., & Castelli, G. (2021). Water Harvesting in Farmlands. Handbook of Water Harvesting and Conservation: Basic Concepts and Fundamentals, 87-100. https://10.1002/978 1119478911.ch6.
- Daedlow, K., Beckmann, V., & Arlinghaus, R. (2011). Assessing an adaptive cycle in a social system under external pressure to change: the importance of intergroup relations in recreational fisheries governance. Ecology and Society, 16(2). https://www.jstor.org/stable/26268880.
- Dietz, T., E. Ostrom, and P.C. Stern. 2003. The struggle to govern the commons. Science 302, no. 5652: 1907–1912. DOI: 10.1126/science.1091015.
- Earman, S., & Dettinger, M. (2011). Potential impacts of climate change on groundwater resources–a global review. Journal of water and climate change, 2(4), 213-229. https://doi.org/10.2166/wcc.2011.034.
- Ekeland, I. (2002). Rene Thom (1923-2002) - obituary. Nature, 420 (6917), 758. https://doi.org/10.1038/420758a.
- Escamilla Nacher, M., Ferreira, C. S. S., Jones, M., & Kalantari, Z. (2021). Application of the Adaptive Cycle and Panarchy in La Marjaleria Social-Ecological System: Reflections for Operability. Land, 10(9), 980. https://doi.org/10.3390/land10090980.
- Fath, B.D., Dean, C.A., Katzmair, H., )2015(. Navigating the adaptive cycle: an approach to managing the resilience of social systems. Ecol. Soc. 20, 24. https://www.jstor.org/stable/26270208.
- Foster, S., & van der Gun, J. (2016). Groundwater governance: key challenges in applying the global framework for action. Hydrogeology Journal, 24(4), 749-752. https://doi.org/10.1007/s 10040-016-1376-0.
- Foster, S., Garduno, H., Tuinhof, A., & Tovey, C. (2010). Groundwater governance: conceptual framework for assessment of provisions and needs (No. 57555, pp. 1-16). The World Bank. https://policycommons.net/artifacts/1523029/groundwater-governance/2207405/.
- Foster, S., Pulido-Bosch, A., Vallejos, Á., Molina, L., Llop, A., & MacDonald, A. M. (2018). Impact of irrigated agriculture on groundwater-recharge salinity: a major sustainability concern in semi-arid regions. Hydrogeology Journal, 26(8), 2781-2791. https://doi.org/10.1007/s10040-018-1830-2.
- Gejl, R. N., Bjerg, P. L., Henriksen, H. J., Bitsch, K., Troldborg, L., Schullehner, J., ... & Rygaard, M. (2020). Relating wellfield drawdown and water quality to aquifer sustainability–A method for assessing safe groundwater abstraction. Ecological Indicators, 110, 105782. https://doi.org/10.1016/j.ecolind.2019.105782.
- Grundmann, P., Ehlers, M. H., & Uckert, G. (2012). Responses of agricultural bioenergy sectors in Brandenburg (Germany) to climate, economic and legal changes: An application of Holling's adaptive cycle. Energy Policy, 48, 118-129. https://doi.org/10.1016/j.enpol.2012.04.051
- Habiba, U., Abedin, M. A., Shaw, R., & Hassan, A. W. R. (2014). Salinity-induced livelihood stress in coastal region of Bangladesh. In Water insecurity: A social dilemma. Emerald Group Publishing Limited, https://www.emerald.com/insight/content/doi/10.1108/S2040-7 262%282013% 290000013013/full/html.
- Henriksen, H. J., Troldborg, L., Højberg, A. L., & Refsgaard, J. C. (2008). Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater–surface water model. Journal of Hydrology, 348(1-2), 224-240. https://doi.org/10.1016/j.jhydrol.2007.09.056.
- Holling, C. S. )1986(. The resilience of terrestrial ecosystems; local surprise and global change. Pages 292-317 in W. C. Clark and R. E. Munn, editors. Sustainable development of the biosphere. Cambridge University Press, Cambridge, UK. https://pure.iiasa.ac.at/13667.
- Holling, C. S., & Gunderson. L.H. )2002(. Resilience and adaptive cycles. Pages 25-62 in L. H. Gunderson and C. S. Holling, editors. Panarchy: understanding transformations in human and natural systems. Island Press, Washington, D.C., USA. http://hdl.handle.net/10919/67621
- Holling, C.S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4(5), 390-405. https://doi.org/10.1007/s10021-001-0101-5.
- Hund, S. V., Allen, D. M., Morillas, L., & Johnson, M. S. (2018). Groundwater recharge indicator as tool for decision makers to increase socio-hydrological resilience to seasonal drought. Journal of Hydrology, 563, 1119-1134, https://doi.org/10.1016/j.jhydrol.2018.05.069.
- Jasechko, S., Birks, S. J., Gleeson, T., Wada, Y., Fawcett, P. J., Sharp, Z. D., ... & Welker, J. M. (2014). The pronounced seasonality of global groundwater recharge. Water Resources Research, 50(11), 8845-8867. https://doi.org/10.1002/2014WR015809
- Kernberg, O. F. (1988). Object relations theory in clinical practice. The Psychoanalytic Quarterly, 57(4), 481-504. https://doi.org/10.1080/21674086.1988.11927218.
- Kløve, B., Ala-Aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., ... & Widerlund, A. (2011). Groundwater-dependent ecosystems. Part I: Hydroecological status and trends. Environmental Science & Policy, 14(7), 770-781. https://doi.org/10.1016/j.envsci. 2011.04.002.
- Konikow, L.F. (2013). Groundwater depletion in the United States (1900-2008). USGS Scientific Investigations Report 2013- 5079. Reston, Virginia: USGS. https://doi.org/10.3133/sir20135079
- Kopeć, D., Michalska-Hejduk, D., & Krogulec, E. (2013). The relationship between vegetation and groundwater levels as an indicator of spontaneous wetland restoration. Ecological Engineering, 57, 242-251. https://doi.org/10.1016/j.ecoleng.2013.04.028
- Lerner, D. N., & Harris, B. (2009). The relationship between land use and groundwater resources and quality. Land use policy, 26, S265-S273. https://doi.org/10.1016/j.landusepol.2009.09.005.
- Li, Y., Kappas, M., & Li, Y. F. (2017). Exploring the coastal urban resilience and transformation of coupled human-environment systems. Journal of Cleaner Production, 195, 1505–1511. https://doi.org/10.1016/j.jclepro.2017.10.227
- Linnenluecke, M.K., & Griffiths, A. (2010). Corporate sustainability and organizational culture. Journal of World Business, 45(4), 357-366. https://doi.org/10.1016/j.jwb.2009.08.006
- Liu, D., Cao, C., Chen, W., Ni, X., Tian, R., & Xing, X. (2017). Monitoring and predicting the degradation of a semi-arid wetland due to climate change and water abstraction in the Ordos Larus relictus National Nature Reserve, China. Geomatics, Natural Hazards and Risk, 8(2), 367-383. https://doi.org/10.1080/19475705.2016.1220024
- López-Gunn, E. (2012). Groundwater governance and social capital. Geoforum, 43(6), 1140-1151. https://doi.org/10.1016/j.geoforum.2012.06.013.
- Majidipour, F., Najafi, S. M. B., Taheri, K., Fathollahi, J., & Missimer, T. M. (2021). Index-based Groundwater Sustainability Assessment in the Socio-Economic Context: a Case Study in the Western Iran. Environmental Management, 67(4), 648-666. https://doi.org/10.1007/s00267-021-01424-7
- Mathias, J. D., Anderies, J. M., Baggio, J., Hodbod, J., Huet, S., Janssen, M. A., & Schoon, M. (2020). Exploring non-linear transition pathways in social-ecological systems. Scientific. https://doi.org/10.1038/s41598-020-59713-w
- Molle, F., & Closas, A. (2020). Why is state‐centered groundwater governance largely ineffective? A review. Wiley Interdisciplinary Reviews: Water, 7(1), e1395. https://doi.org/10.1002/wat2.1395
- Petit, O., Kuper, M., López-Gunn, E., Rinaudo, J. D., Daoudi, A., & Lejars, C. (2017). Can agricultural groundwater economies collapse? An inquiry into the pathways of four groundwater economies under threat. Hydrogeology Journal, 25(6), 1549-1564. https://DOI:10.1007/s10040-017-1567-3
- Popa, C. L., Bretcan, P., Radulescu, C., Carstea, E. M., Tanislav, D., Dontu, S. I., & Dulama, I. D. (2019). Spatial distribution of groundwater quality in connection with the surrounding land use and anthropogenic activity in rural areas. Acta Montanistica Slovaca, 24(2). https://actamont.tuke.sk/pdf/2019/n2/1popa.pdf
- Pulido-Bosch, A., Rigol-Sanchez, J. P., Vallejos, A., Andreu, J. M., Ceron, J. C., Molina-Sanchez, L., & Sola, F. (2018). Impacts of agricultural irrigation on groundwater salinity. Environmental earth sciences, 77(5), 197, https://doi.org/10.1007/s12665-018-7386-6
- Randle, J.M., Stroink, M.L., Nelson, C.H. (2014). Addiction and the adaptive cycle: a new focus. Addict. Res. Theory 6359, 1–8. https://doi.org/10.3109/16066359.2014.942295
- Sandwii, W. J. P. (2007). Groundwater potential to supply population demand within the Kompienga dam basin in Burkina Faso. https://nbn-resolving.org/urn:nbn:de:hbz:5N-12319
- Silberstein, J., & Maser, C. (2013). Land-use planning for sustainable development. CRC Press.
- Sundstrom, S. M., & Allen, C. R. (2019). The adaptive cycle: More than a metaphor. Ecological Complexity, 39, https://www.routledge.com/Land-Use-PlanningSilberstein-Maser/p/book/9780367868048.
- Thapa, R., Thoms, M., & Parsons, M. (2016). An adaptive cycle hypothesis of semi‐arid floodplain vegetation productivity in dry and wet resource states. Ecohydrology, 9(1), 39-51. https://doi.org/10.1002/eco.1609
- Vrba, J., Girman, J., van der Gun, J., Haie, N., Hirata, R., Lopez-Gunn, E., ... & Wallin, B. (2007). Groundwater resources sustainability indicators (Vol. 14, p. 114). A. Lipponen (Ed.). Paris: Unesco.
- Walker, B., Holling, C.S., Carpenter, S.R., & Kinzig, A. (2004). Resilience, adaptability, and transformability in social-ecological systems. Ecology and Society, 9(2), 5. https://www.jstor.org/stable/26267673
- Williams, A., Whiteman, G., & Kennedy, S. (2019). Cross-scale systemic resilience: implications for organization studies. Business & Society, 1-30. https://doi:10.1177/0007650319825870
- Wycisk, C., McKelvey, B., & H€ulsmann, M. (2008). “Smart parts” supply networks as complex adaptive systems: analysis and implications”, International Journal of Physical Distribution and Logistics Management, 30(2), 108-125. https://doi.org/10.1108/09600030810861198.
- Xu, Y. S., Shen, S. L., Du, Y. J., Chai, J. C., & Horpibulsuk, S. (2013). Modelling the cutoff behavior of underground structure in multi-aquifer-aquitard groundwater system. Natural hazards, 66(2), 731-748, https://doi.org/10.1007/s11069-012-0512-y
- Zazueta, A. E., & Garcia, J. R. (2021). Multiple actors and confounding factors: Evaluating impact in complex social-ecological systems. In Evaluating Environment in International Development (pp. 93-110). Routledge, https://library.oapen.org/bitstream/handle/20.500.12657/46924/9781000363968.pdf?sequence=1#page=114
- Zhang, L., Huang, Q., He, C., Yue, H., & Zhao, Q. (2021). Assessing the dynamics of sustainability for social-ecological systems based on the adaptive cycle framework: A case study in the Beijing-Tianjin-Hebei urban agglomeration. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2021.102899
|