- Abramowitz, M. and Stegun, I. A. (1965). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover, New York.
- Ghamlouch, H., Grall, A. and Fouladirad, M. (2015). On the use of jump-diffusion process for maintenance decision-making: A first step. In 2015 Annual Reliability and Maintainability Symposium (RAMS), 1–6.
- Kannan, D. (1979). An Introduction to Stochastic Processes. North Holland, New York.
- Karlin, S. and Taylor, H. M. (1981). A Second Course in Stochastic Processes. Academic Press, New York.
- Lefebvre, M. and Gaspo, J. (1996a). Optimal control of wear processes. IEEE Transactions on Automatic Control, 41, 112–115.
- Lefebvre, M. and Gaspo, J. (1996b). Controlled wear processes: a risk-sensitive formulation. Engineering Optimization, 26, 187–194.
- Lefebvre, M. (2000). Risk-averse control of a three-dimensional wear process. International Journal of Control, 73, 1307–1311.
- Lefebvre, M. (2007). Applied Stochastic Processes. Springer, New York.
- Lefebvre, M. (2010). Mean fist-passage time to zero for wear processes. Stochastic Models, 26, 46–53.
- Makasu, C. (2022). Homing problems with control in the diffusion coefficent. IEEE Transactions on Automatic Control, 67, 3770–3772.
- Nicolai, R. P. and Dekker, R. (2007). A comparison of two non-stationary degradation processes. In: Aven, T. and Vinnem, J. E. (eds.) Risk, Reliability and Societal Safety: Proceedings ESREL 2007, 25-27 June, Stavanger, Taylor & Francis, London, 1109–1114.
- Øksendal, B. (2003). Stochastic Diffrential Equations: An Introduction with Applications. 6th Ed., Springer-Verlag, Berlin.
- Rishel, R. (1991). Controlled wear processes: modeling optimal control. IEEE Transactions on Automatic Control, 36, 1100–1102. Shahraki, A. F., Yadav, O. P. and Liao, H. (2017). A review on degradation modelling and its engineering applications. International Journal of Performability Engineering, 13, 299–314.
- Whittle, P. (1982). Optimization Over Time I. Wiley, Chichester.
- Whittle, P, (1990) Risk-Sensitive Optimal Control. Wiley, Chichester.
- Whitmore, G. A. and Schenkelberg, F, (1997). Modelling accelerated degradation data using Wiener diffusion with a time scale transformation. Lifetime Data Analysis, 3, 27–45.
- Ye, Z.-S., Wang, Y., Tsui, K.-L. and Pecht, M. (2013). Degradation data analysis using Wiener processes with measurement errors. IEEE Transactions on Reliability, 62, 772–780.
- Zhai, Q., Chen, P., Hong, L. and Shen, L. (2018) A random-effects Wiener degradation model based on accelerated failure time. Reliability Engineering & System Safety, 180, 94–103.
- Zhang, Z., Hu, C., Si, X., Zhang, J. and Zheng, J. (2017) Stochastic degradation process modeling and remaining useful life estimation with flexible random-effects. Journal of the Franklin Institute, 354, 2477–2499.
- Zhou, S., Tang, Y. and Xu, A. (2021). A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio. Reliability Engineering & System Safety, 216, 107895.
|