- Alef, K., & Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Academic Press.
- Allison, S.D., Gartner, T.B., Holland, K., Weintraub, M., & Sinsabaugh, R.L. (2007). Soil enzymes: linking proteomics and ecological processes. Manual of Environmental Microbiology, 704-711. https://doi.org/10.1128/ 9781555815882.ch58
- Amorim, H.C., Hurtarte, L.C., Souza, I.F., & Zinn, Y.L. (2022). C: N ratios of bulk soils and particle-size fractions: Global trends and major drivers. Geoderma, 425, 116026. https://doi.org/10.1016/j.geoderma. 2022.116026
- Aquino, A.J., Tunega, D., Schaumann, G.E., Haberhauer, G., Gerzabek, M.H., & Lischka, H. (2011). The functionality of cation bridges for binding polar groups in soil aggregates. International Journal of Quantum Chemistry, 111(7‐8), 1531-1542. https://doi.org/10.1002/qua.22693
- Arnarson, T.S., & Keil, R.G. (2007). Changes in organic matter–mineral interactions for marine sediments with varying oxygen exposure times. Geochimica et Cosmochimica Acta, 71(14), 3545-3556. https://doi.org/10.1016/ j.gca.2007.04.027
- Basile‐Doelsch, I., Amundson, R., Stone, W.E.E., Masiello, C.A., Bottero, J.Y., Colin, F., Masin, F., Borschneck, D., & Meunier, J.D. (2005). Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Réunion. European Journal of Soil Science, 56(6), 689-703. https://doi.org/10.1111/j.1365-2389.2005.00703.x
- Bechtold, J.S., & Naiman, R.J. (2006). Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna. Soil Biology and Biochemistry, 38(6), 1325-1333. https://doi.org/10.1016/ j.soilbio.2005.09.028
- Bergaya, F., & Lagaly, G. (2013). Handbook of Clay Science (2 ed., Vol. 5). Elsevier Press. https://books.google. com/books?id=UmNJ5FGxUxwC
- Boyd, S., & Mortland, M. (2017). Enzyme interactions with clays and clay-organic matter complexes. In Soil Biochemistry (pp. 1-28). Routledge.
- Brookes, P.C., Landman, A., Pruden, G., & Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837-842. https://doi.org/10.1016/0038-0717(85)90144-0
- Buol, S.W., Southard, R.J., Graham, R.C., & McDaniel, P.A. (2011). Soil Genesis and Classification. John Wiley and Sons.
- Carson, J.K., Campbell, L., Rooney, D., Clipson, N., & Gleeson, D.B. (2009). Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiology Ecology, 67(3), 381-388. https://doi.org/ 10.1111/j.1574-6941.2008.00645.x
- Castellano, M.J., Kaye, J.P., Lin, H., & Schmidt, J.P. (2012). Linking carbon saturation concepts to nitrogen saturation and retention. Ecosystems, 15, 175-187. https://doi.org/10.1007/s10021-011-9501-3
- Chorom, M., & Rengasamy, P. (1995). Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. European Journal of Soil Science, 46(4), 657-665. https://doi.org/10.1111/j.1365-2389.1995.tb01362.x
- Datta, R., Anand, S., Moulick, A., Baraniya, D., Imran Pathan, S., Rejsek, K., Vranova, V., Sharma, M., Sharma, D., & Formanek, P. (2017). How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review. International Agrophysics, 31(2). https://www.degruyter.com/view/j/intag
- Davidson, E.A., & Janssens, I.A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165-173. https://doi.org/10.1038/nature04514
- Ding, G.C., Pronk, G.J., Babin, D., Heuer, H., Heister, K., Kögel-Knabner, I., & Smalla, K. (2013). Mineral composition and charcoal determine the bacterial community structure in artificial soils. FEMS Microbiology Ecology, 86(1), 15-25. https://doi.org/10.1111/1574-6941.12070
- Ellis, R.J. (2004). Artificial soil microcosms: a tool for studying microbial autecology under controlled conditions. Journal of Microbiological Methods, 56(2), 287-290. https://doi.org/10.1016/j.mimet.2003.10.005
- Galicia-Andrés, E., Escalona, Y., Oostenbrink, C., Tunega, D., & Gerzabek, M.H. (2021). Soil organic matter stabilization at molecular scale: The role of metal cations and hydrogen bonds. Geoderma, 401, 115237. https://doi.org/10.1016/j.geoderma.2021.115237
- Grzyb, A., Wolna-Maruwka, A., & Niewiadomska, A. (2020). Environmental factors affecting the mineralization of crop residues. Agronomy, 10(12), 1951. https://doi.org/10.3390/agronomy10121951
- Guenet, B., Leloup, J., Hartmann, C., Barot, S., & Abbadie, L. (2011). A new protocol for an artificial soil to analyse soil microbiological processes. Applied Soil Ecology, 48(2), 243-246. https://doi.org/10.1016/j.apsoil. 2011.04.002
- Guggenberger, G., & Kaiser, K. (2003). Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma, 113(3-4), 293-310. https://doi.org/10.1016/S0016-7061(02)00366-X
- Hamarashid, N.H., Othman, M.A., & Hussain, M.A.H. (2010). Effects of soil texture on chemical compositions, microbial populations and carbon mineralization in soil. Egyptian Journal of Experimental Biology (Botany) 6(1), 59-64.
- Huang, Q., Liang, W., & Cai, P. (2005). Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol. Colloids and Surfaces B: Biointerfaces, 45(3-4), 209-214. https://doi.org/10.1016/j.colsurfb.2005.08.011
- Jackson, M.L. (2005). Soil Chemical Analysis, Advanced Course. UW-Madison Libraries Parallel Press.
- Kamarudin, K.S., Hamdan, H., & Mat, H. (2003). Methane adsorption characteristic dependency on zeolite structures and properties. Proceedings of the Symposium of Malaysian Chemical Engineers, Malaysian.
- Keiluweit, M., Nico, P.S., Kleber, M., & Fendorf, S. (2016). Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry, 127, 157-171. https://doi.org/10.1007/s10533-015-0180-6
- Klute, A. (1986). Water Retention: Laboratory Methods. In Methods of Soil Analysis: part 1-Physical and Mineralogical Methods (2 ed., pp. 635-662). Soil Science Society of America, American Society of Agronomy.
- Knicker, H. (2011). Soil organic N-An under-rated player for C sequestration in soils. Soil Biology and Biochemistry, 43(6), 1118-1129. https://doi.org/10.1016/j.soilbio.2011.02.020
- Kooijman, A., Van Mourik, J., & Schilder, M. (2009). The relationship between N mineralization or microbial biomass N with micromorphological properties in beech forest soils with different texture and pH. Biology and Fertility of Soils, 45, 449-459. https://doi.org/10.1007/s00374-009-0354-2
- Kunhi Mouvenchery, Y., Jaeger, A., Aquino, A.J., Tunega, D., Diehl, D., Bertmer, M., & Schaumann, G.E. (2013). Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time. PLOS ONE, 8(6), e65359. https://doi.org/10.1371/journal.pone.0065359
- Kunito, T., Isomura, I., Sumi, H., Park, H.D., Toda, H., Otsuka, S., Nagaoka, K., Saeki, K., & Senoo, K. (2016). Aluminum and acidity suppress microbial activity and biomass in acidic forest soils. Soil Biology and Biochemistry, 97, 23-30. https://doi.org/10.1016/j.soilbio.2016.02.019
- Lal, R. (2020). Soil organic matter content and crop yield. Journal of Soil and Water Conservation, 75(2), 27A-32A. https://doi.org/10.2489/jswc.75.2.27A
- Li, J., Wu, J., Yu, J., Wang, K., Li, J., Cui, Y., Shangguan, Z., & Deng, L. (2024). Soil enzyme activity and stoichiometry in response to precipitation changes in terrestrial ecosystems. Soil Biology and Biochemistry, 191, 109321. https://doi.org/10.1016/j.soilbio.2024.109321
- Li, L., Xu, M., Eyakub Ali, M., Zhang, W., Duan, Y., & Li, D. (2018). Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment. PLOS ONE, 13(9), e0203812. https://doi.org/10.1371/journal.pone.0203812
- Liu, Z., Liu, G., Fu, B., & Zheng, X. (2008). Relationship between plant species diversity and soil microbial functional diversity along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China. Ecological Research, 23(3), 511-518. https://doi.org/10.1007/s11284-007-0405-9
- McGilloway, R.L., Weaver, R.W., Ming, D.W., & Gruener, J.E. (2003). Nitrification in a zeoponic substrate. Plant and Soil, 256(2), 371-378. https://doi.org/10.1023/A:1026174026995
- Mikutta, R., Kleber, M., Torn, M.S., & Jahn, R. (2006). Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry, 77(1), 25-56. https://doi.org/10.1007/s10533-005-0712-6
- Ming, D.W., & Boettinger, J.L. (2001). Zeolites in soil environments. Reviews in Mineralogy and Geochemistry, 45(1), 323-345. https://doi.org/10.2138/rmg.2001.45.11
- Mohammadi, K., Heidari, G., Khalesro, S., & Sohrabi, Y. (2011). Soil management, microorganisms and organic matter interactions: A review. African Journal of Biotechnology, 10(86), 19840. https://doi.org/10.5897/ AJBX11.006
- Najmadeen, H.H. (2011). Effects of soil organic matter, total nitrogen and texture on nitrogen mineralization process. Al-Nahrain Journal of Science, 8, 9. https://doi.org/10.22401/JNUS.14.2.19
- Nikolaidis, N.P., & Bidoglio, G. (2013). Soil organic matter dynamics and structure. In Sustainable Agriculture Reviews (pp. 175-199). Springer.
- Paul, R., & Sahoo, S. (2022). Clay–Enzyme Interactions and Their Implications. In Soil Management for Sustainable Agriculture: New Research and Strategies (pp. 49). Apple Academic Press. https://doi.org/ 10.1201/9781003184881-3
- Pronk, G.J., Heister, K., Ding, G.C., Smalla, K., & Kögel-Knabner, I. (2012). Development of biogeochemical interfaces in an artificial soil incubation experiment; aggregation and formation of organo-mineral associations. Geoderma, 189, 585-594. https://doi.org/10.1016/j.geoderma.2012.05.020
- Punekar, N. (2018). Enzymes: catalysis, kinetics and mechanisms. Springer.
- Rakhsh, F., & Golchin, A. (2018). Carbohydrate concentrations and enzyme activities as influenced by exchangeable cations, mineralogy and clay content. Applied Clay Science, 163, 214-226. https://doi.org/ 10.1016/j.clay.2018.07.031
- Rakhsh, F., Golchin, A., Al Agha, A.B., & Alamdari, P. (2017). Effects of exchangeable cations, mineralogy and clay content on the mineralization of plant residue carbon. Geoderma, 307, 150-158. https://doi.org/10.1016/j.geoderma.2017.07.010
- Rayment, G.E., & Lyons, D.J. (2011). Soil Chemical Methods (Vol. 3). CSIRO Publishing.
- Sariyildiz, T., & Anderson, J.M. (2003). Interactions between litter quality, decomposition and soil fertility: a laboratory study. Soil Biology and Biochemistry, 35(3), 391-399. https://doi.org/10.1016/S0038-0717(02)00290-0
- Schinner, F., & Von Mersi, W. (1990). Xylanase, CM-cellulase and invertase activity in soil: an improved method. Soil Biology and Biochemistry, 22(4), 511-515. https://doi.org/10.1016/0038-0717(90)90187-5
- Schwesig, D., Kalbitz, K., & Matzner, E. (2003). Effects of aluminium on the mineralization of dissolved organic carbon derived from forest floors. European Journal of Soil Science, 54(2), 311-322. https://doi.org/10.1046/ j.1365-2389.2003.00523.x
- Sinegani, A.A.S., Emtiazi, G., & Shariatmadari, H. (2005). Sorption and immobilization of cellulase on silicate clay minerals. Journal of Colloid and Interface Science, 290(1), 39-44. https://doi.org/10.1016/j.jcis.2005.04.030
- Sinegani, A.A.S., & Mahohi, A. (2010). Soil water potential effects on the cellulase activities of soil treated with sewage sludge. Plant, Soil and Environment, 56, 333-339.
- Soinne, H., Keskinen, R., Räty, M., Kanerva, S., Turtola, E., Kaseva, J., Nuutinen, V., Simojoki, A., & Salo, T. (2021). Soil organic carbon and clay content as deciding factors for net nitrogen mineralization and cereal yields in boreal mineral soils. European Journal of Soil Science, 72(4), 1497-1512. https://doi.org/10.1111/ejss.13003
- Tabatabai, M. (1994). Soil Enzymes. In R. W. Weaver (Ed.), Methods of Soil Analysis. Part 2 (Vol. 2). Soil Science Society of America.
- Thabit, F. N., El-Shater, A.-H., & Soliman, W. (2023). Role of silt and clay fractions in organic carbon and nitrogen stabilization in soils of some old fruit orchards in the Nile floodplain, Sohag Governorate, Egypt. Journal of Soil Science and Plant Nutrition, 23(2), 2525-2544. https://doi.org/10.1007/s42729-023-01209-3
- Theng, B. (2012). Proteins and enzymes. In Developments in Clay Science (Vol. 4, pp. 245-318). Elsevier.
- Tian, Q., Yang, F., Wang, Z., & Zhang, Q. (2024). Variation of soil organic carbon components and enzyme activities during the ecological restoration in a temperate forest. Ecological Engineering, 201, 107192. https:// doi.org/10.1128/9781555815882.ch58
- Ulery, A.L., & Drees, L.R. (2008). Methods of Soil Analysis: Mineralogical Methods (Vol. 5). Soil Science Society of America. https://books.google.com/books?id=Lqh6mYoKjdQC
- Ve, N.B., Olk, D., & Cassman, K.G. (2004). Characterization of humic acid fractions improves estimates of nitrogen mineralization kinetics for lowland rice soils. Soil Science Society of America Journal, 68(4), 1266-1277. https://doi.org/10.2136/sssaj2004.1266
- Venterea, R.T., Lovett, G.M., Groffman, P.M., & Schwarz, P.A. (2003). Landscape patterns of net nitrification in a northern hardwood-conifer forest. Soil Science Society of America Journal, 67(2), 527-539. https://doi.org/ 10.2136/sssaj2003.5270
- Yoder, L. (1919). Adaptation of the Mohr Volumetric Method to General Determinations of Chlorine. Industrial and Engineering Chemistry, 11(8), 755-755. https://doi.org/10.1021/ie50116a013
- Zimmerman, A.R., & Ahn, M.Y. (2010). Organo-mineral-enzyme interaction and soil enzyme activity. In Soil enzymology (pp. 271-292). Springer. https://doi.org/10.1007/978-3-642-14225-3_15
|