2- Alharbi, K., Amin, M.A., Ismail, M.A., Ibrahim, M.T., Hassan, S.E.D., Fouda, A., Eid, A.M., & Said, H.A. (2022). Alleviate the drought stress on Triticum aestivum L. using the algal extracts of Sargassum latifolium and Corallina elongate versus the commercial algal products. Life, 12(11), 1757.
5- Afzal, S., Chaudhary, N., & Singh, N.K. (2021). Role of soluble sugars in metabolism and sensing under abiotic stress. Plant growth regulators: Signalling under stress conditions. In Plant Growth Regulators. Springer, pp. 305-334 . https://doi.org/10.1007/978-3-030-61153-8_14
8- Courbier, S., Grevink, S., Sluijs, E., Bonhomme, P.O., Kajala, K., Van Wees, S.C., & Pierik, R. (2020). Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. Plant Cell and Environment, 43(11), 2769-2781. https://doi.org/10.1111/pce.13870
9- Esmaielpour, B., & Fatemi, H. (2020). Effects of seaweed extract on physiological and biochemical characteristics of basil ( Ocimum basilicum L.) under water-deficit stress conditions. Journal of Soil and Plant Interactions Isfahan University of Technology, 11(1), 59-69. https://doi.org/10.47176/jspi.11.1.10288
10- Faten, S., Abd El-Aal., Shaheen, A.M., Ahmed, A.A., & Mahmoud, A.R. (2010). Effect of foliar application of urea and amino acids mixtures as antioxidants on the growth and yield and characteristics of squash. Research Journal of Agriculture and Biological Sciences, 6(5), 583-588.
12- Goñi, O., Fort, A., Quille, P., McKeown, P.C., Spillane, C., & O'Connell, S. (2016). Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: Same seaweed but different. Journal of Agricultural and Food Chemistry, 64, 2980–2989. https://doi.org/10.1021/acs.jafc.6b00621
13- Gurrieri, L., Merico, M., Trost, P., Forlani, G., & Sparla, F. (2020). Impact of drought on soluble sugars and free proline content in selected Arabidopsis mutants. Biology, 9(11), 367. https://doi.org/10.3390/biology9110367
14- Guinan, K.J., Sujeeth, N., Copeland, R.B., Jones, P.W., O'brien, N.M., Sharma, H.S.S., Prouteau, P.F.J., & O'sullivan, J.T. (2012). Discrete roles for extracts of Ascophyllum nodosum in enhancing plant growth and tolerance to abiotic and biotic stresses. In I World Congress on the Use of Biostimulants in Agriculture, 1009, 127-135.
15- Jabbar, A.A., Abdullah, F.O., Hassan, A.O., Galali, Y., Hassan, R.R., Rashid, E.Q., Salih, M.I. & Aziz, K.F. (2022). Ethnobotanical, phytochemistry, and pharmacological activity of onosma (Boraginaceae): An updated review. Molecules, 27(24), 8687. https://doi.org/10.3390/molecules27248687
16- Mutale-Joan, C., Rachidi, F., Mohamed, H.A., Mernissi, N.E., Aasfar, A., Barakate, M., Mohammed, D., Sbabou, L., & Arroussi, H.E. (2021). Microalgae-cyanobacteria–based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress. Journal of Applied Phycology, 33, 3779-3795. https://doi.org/10.1007/s10811-021-02559-0
18- Nourashrafeddin, S.M., Ramandi, A., & Seifi, A. (2023). Rhizobacteria isolated from xerophyte Haloxylon ammodendron manipulate root system architecture and enhance drought and salt tolerance in Arabidopsis thaliana. International Microbiology, 27(2), 1-11. https://doi.org/10.1007/s10123-023-00394-6
20 - Punitha, P., Priyadharshini, P., Nanthini Devi, K., Dinesh Kumar, S., Roopavathy, J., Begum, A., Santhanam, P., & Perumal, P. (2024). Effect of seaweed liquid extract as an organic biostimulant on the growth, fatty acids and high-value pigment production of Vigna radiata. Biomass Conversion and Biorefinery, 14(6), 7345-7357. https://doi.org/10.1007/s13399-022-03048-1
21- Pan, W., Cheng, X., Du, R., Zhu, X., & Guo, W. (2024). Detection of chlorophyll content based on optical properties of maize leaves. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 309, 123-843. https://doi.org/10.1016/j.saa.2024.123843
23- Ramandi, A., Javan, I.Y., Tazehabadi, F.M., Asl, G.I., Khosravanian, R., & Ebrahimzadeh, M.H. (2019). Improvement in seed surface sterilization and in vitro seed germination of ornamental and medicinal plant-Catharanthus roseus (L.). Chiang Mai Journal of Science, 46(6), 1107-1112.
24- Ramandi, A., & Seifi, A. (2023). Cupriavidus metallidurans bacteria enhance sodium uptake by plants. Rhizosphere, 27, 100767.
25- Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J.A., Hilal, M., & Prado, F.E. (2009). Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling and Behavior, 4(5), 388-393.
26- Savage, J.A., Hudzinski, S.J., & Olson, M.R. (2024). Use of electrolyte leakage to assess floral damage after freezing. Applications in Plant Sciences, 12(5), 1-8. https://doi.org/10.1002/aps3.11569
28- Shabala, S., & Cuin, T.A. (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum, 133(4), 651-669.
29- Sayyari Zahan, M.H., Sayyadi Anari, M.H., Zamani, G., Mahmoodi, S., & Golestanifar, F. (2022). The effect of two types of algae on the growth characteristics of bread wheat and basil under salinity stress. Environmental Stresses in Crop Sciences, 15(3), 731-740.
30- Vaghparast, M., Maleki-Farahani, S., Sinaki, J.M., & Zarei, G. (2012). Mitigation of drought stress in chickpea through application of humic acid and seaweed extract. Crop Production in Stress Environment, 4, 59–71.
31- Xu, C., & Leskovar, D. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition valued under drought stress. Scientia Horticulturae, 183, 39–47. https://doi.org/10.1016/j.scienta.2014.12.004
32- Zarbakhsh, S., & Shahsavar, A.R. (2023). Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses. BMC Plant Biology, 23(1), 543. https://doi.org/10.1186/s12870-023-04568-2
34- Zhao, C., Zhang, H., Song, C., Zhu, J.K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1), 1-41. https://doi.org/10.1016/j.xinn.2020.100017
|