- Alsini, N., Kutbi, H.A., Hakim, N., Mosli, R., Eid, N., & Mulla, Z. (2023). Factors influencing grocery shopping choices and the prevalence of food label use among Saudi mothers: a cross-sectional pilot study. Nutrition & Food Science, 53(2), 432-444. https://doi.org/10.1108/NFS-11-2021-0345
- Applebaum, W. (1951). Studying customer behavior in retail stores. Journal Market, 172–178. https://doi.org/10.1177/002224295101600204
- Barh, D. (2020). Artificial Intelligence in Precision Health: From Concept to Applications. Academic Press. https://doi.org/10.1016/B978-0-12-817133-2.09988-2
- Berry, M.A., & Linoff, G.S. (2000). Mastering data mining: The art and science of customer relationship management. Industrial Management & Data Systems.
- Bhatti, K.L., Latif, S., & Latif, R. (2015). Factors affecting consumer's store choice behavior. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 4(9), 71-77.
- Büyükdağ, N., Soysal, A.N., & Ki̇tapci, O. (2020). The effect of specific discount pattern in terms of price promotions on perceived price attractiveness and purchase intention: An experimental research. Journal of Retailing and Consumer Services, 55, 102112. https://doi.org/10.1016/j.jretconser.2020.102112
- Chandrakala, V.G., Sowmya, C.U., & Nagesha, H.G. (2023). A study on factors influencing the consumer buying behavior with reference to organized apparel retail outlets. Journal of Innovations in Business and Industry, 1(2), 85-92. https://doi.org/10.61552/JIBI.2023.02.005
- Chen, T., Samaranayake, P., Cen, X., Qi, M., & Lan, Y. (2022). The impact of online reviews on consumers’ purchasing decisions: Evidence from an Eye-Tracking study. Frontiers in Psychology, 13, 865702. https://doi.org/10.3389/fpsyg.2022.865702
- Cherfi, A., Nouira, K., & Ferchichi, A. (2018). Very fast C4.5 decision tree algorithm. Applied Artificial Intelligence, 32(2), 119-137. https://doi.org/10.1080/08839514.2018.1447479
- Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46. https://doi.org/10.1177/001316446002000104
- Daoudi, H., & İldem Develi, E. (2023). Impact of gender and monthly income on consumer buying behavior. Journal of International Trade, Logistics and Law, 9(1), 241-250.
- Dev, V.A., & Eden, M.R. (2019). Gradient boosted decision trees for lithology classification. In Computer Aided Chemical Engineering, 47, 113-118. https://doi.org/10.1016/B978-0-12-818597-1.50019-9
- Dominici, A., Boncinelli, F., Gerini, F., & Marone, E. (2021). Determinants of online food purchasing: The impact of socio-demographic and situational factors. Journal of Retailing and Consumer Services, 60. https://doi.org/10.1016/j.jretconser.2021.102473
- Donoghue, S., Wilken-Jonker, I., Steffens, F.E., & Kirsten, J.F. (2021). South African consumers' willingness to pay a premium for Karoo Lamb: The influence of subjective and objective knowledge, label information and demographics. Journal of Retailing and Consumer Services, 63. https://doi.org/10.1016/j.jretconser.2021.102664
- Gauri, D.K., Jindal, R.P., Ratchford, B., Fox, E., Bhatnagar, A., Pandey, A., & Howerton, E. (2021). Evolution of retail formats: Past, present, and future. Journal of Retailing, 97(1), 42-61. ISSN 0022-4359. https://doi.org/10.1016/j.jretai.2020.11.002
- Golriz Ziaie, Z., Moghaddasi, R., & Yazdani, S. (2015). Estimation of customer satisfaction index of food markets, Case study: Mashhad Urbanity’s Hypermarkets. Journal of Agricultural Economics and Development, 29(2), 181-191. ISSN 2008-4722. https://doi.org/10.22067/JEAD2.V0I0.40763
- Gomes, A. (2018). Influencing factors of consumer behavior in retail shops available at SSRN: https://ssrn.com/abstract=3151879or http://dx.doi.org/10.2139/ssrn.3151879
- Greenacre, L., & Akbar, S. (2019). The impact of payment method on shopping behavior among low income consumers. Journal of Retailing and Consumer Services, 47, 87-93. https://doi.org/10.1016/j.jretconser.2018.11.004
- Han, J., Kamber, M., & Pei, J. (2022). Data mining: concepts and techniques, Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-381479-1.00020-4
- Hanaysha, J. (2018). An examination of the factors affecting consumer’s purchase decision in the Malaysian retail market. PSU Research Review, 2(1), 7-23. https://doi.org/10.1108/PRR-08-2017-0034
- Hecht, A.A., Perez, C.L., Polascek, M., Thorndike, A.N., Franckle, R.L., & Moran, A.J. (2020). Influence of food and beverage companies on retailer marketing strategies and consumer behavior. International Journal of Environmental Research and Public Health, 17(20), 7381. https://doi.org/10.3390/ijerph17207381
- Hingley, M., Lindgreen, A., & Chen, L. (2009). Development of the grocery retail market in China: A qualitative study of how foreign and domestic retailers seek to increase market share. British Food Journal, 111(1), 44-55. https://doi.org/10.1108/00070700910924227
- Jofreh, M. (2013). An investigation of business activities in Iran retailing industry. Research Journal of Applied Sciences, Engineering and Technology 6(5), 858-861.
- Kol, O., & Levy, S. (2023). Men on a mission, women on a journey - Gender differences in consumer information search behavior via SNS: The perceived value perspective. Journal of Retailing and Consumer Services, 75, https://doi.org/10.1016/j.jretconser.2023.103476
- Kotsiantis, S.B. (2013). Decision trees: a recent overview. Artificial Intelligence Review, 39(4), 261-283. https://doi.org/10.1007/s10462-011-9272-4
- Kotu, V., & Deshpande, B. (2018), Chapter 4 – Classification, Data science: concepts and practice (Second Edition), Morgan Kaufmann, 65-163.
- Kumar, D. (2018). Factors influencing consumers' choice of retail store format in Assam, India. Journal of Marketing Management, 1(17), 22-37.
- Kumar, M.G., Hemanth, K., Gangadhar, N., Kumar, H., & Krishna, P. (2014). Fault diagnosis of welded joints through vibration signals using Naïve Bayes algorithm. Procedia Materials Science, 5, 1922-1928. https://doi.org/10.1016/j.mspro.2014.07.514
- Laine, K. (2014). The factors influencing the choice of grocery store among finnish consumers. Business. ttps://urn.fi/URN:NBN:fi:amk-201405096933
- Lintang, M., Pandiangan, N., & Hyronimus, D. (2022). Use of the C4.5 Algorithm to Analyze Student Interest in Continuing to College. SHS Web of Conferences.
- Liyanage, L., PLGSD, P., & Rathnayake, T. (2020). Determinants of consumers' selection of supermarkets for grocery shopping; Empirical Evidence from Western Province, Sri Lanka. In International Conference on Marketing Management.
- Makgosa, R., & Sangodoyin, O. (2017). Retail market segmentation: the use of consumer decision-making styles, overall satisfaction and demographics. The International Review of Retail, Distribution and Consumer Research, 28(1), 64–91.
- Manuere, F. (2023). Factors affecting customers’ choice of supermarkets for grocery shopping in Chinhoyi Town. International Journal of Academic Research in Public Policy and Governance, 9(1), 10–20
- McHugh, M.L. (2012), Interrater reliability: the kappa statistic. Biochemia Medica, 22(3), 276-282.
- Meng, X., Zhang, P., Xu, Y., & Xie, H. (2020). Construction of decision tree based on C4.5 algorithms for online voltage stability assessment. International Journal of Electrical Power & Energy Systems, 118, https://doi.org/10.1016/j.ijepes.2019.105793
- Moitra, A.K., Bhattacharya, J., Kayal, J.R., Mukerji, B., & Das, A.K. (2021). Innovative exploration methods for minerals, oil, gas, and groundwater for sustainable development. https://doi.org/10.1016/C2020-0-00590-6
- Nguyen, T.D.E. (2019). Factors affecting customer loyalty of different strategic groups in the Vietnamese supermarket sector (Doctoral dissertation, University of hull).
- Nisbet, R., Miner, G.D., & Yale, K. (2018). Chapter 9 – Classification, Nisbet, R., Miner, G. D., & Yale, K., Handbook of statistical analysis and data mining applications. 169-186 in Academic press.
- Noor, Z. (2020). The effect of price discount and in-store display on impulse buying. Journal Ilmu-ilmu Sosial dan Humaniora. 22(2), 133-139. https://doi.org/10.24198/sosiohumaniora.v22i2.26720
- Ooi, M.P., Sok, H.K., Kuang, Y.C., & Demidenko, S. (2017). Alternating decision trees. In P. Samui, S. S. Roy, & V. E. Balas (Eds.), Handbook of Neural Computation. PP 345-371 in Academic Press.
- Pandey, A., & Kaur, D.A. (2018). A comprehensive study on evolution, present scenario and future prospects of retailing. International Journal of Current Research in Life Sciences, 7(2), 1158-1162.
- Quinlan, J.R. (1996). Improved use of continuous attributes in C4.5. Journal of Artificial Research, 4, 77–90. https://doi.org/10.48550/arXiv.cs/9603103
- Quinlan, J.R. (2014). C4.5: Programs for Machine Learning. 58-60. https://books.google.com/books/about/C4_5.html?id=b3ujBQAAQBAJ
- Rahim, M.A., Mushafiq, M., Khan, S., & Arain, Z.A. (2021). RFM-based repurchase behavior for customer classification and segmentation. Journal of Retailing and Consumer Services, 61. https://doi.org/10.1016/j.jretconser.2021.102566
- Ram, S. (2022). Data Mining. Computer Sciences. from Encyclopedia.com: https://www.encyclopedia.com/computing/news-wires-white-papers-and-books/data-mining
- Rasheed, A., Shahid Yaqub, R., & Baig, F. (2018). Factors affecting impulse buying behaviors in shopping malls: Evidence from Bahawalpur Region, Pakistan. Journal of Marketing and Consumer Research. 39.
- Razu, M.A., & Roy, D. (2019). Prominent factors influencing consumers’ choice of retail store. Journal of Business and Management, 21(6), 62-66.
- Reddy, G.S., & Chittineni, S. (2021). Entropy based C4.5-SHO algorithm with information gain optimization in data mining. Peer Journal Computer Science, 7. https://doi.org/10.7717/peerj-cs.424
- Roy, G., Debnath, R., & Mitra, P.S. (2021). Analytical study of low-income consumers’ purchase behaviour for developing marketing strategy. International Journal Syst Assur Engineering Management, 12, 895–909. https://doi.org/10.1007/s13198-021-01143-6
- Savaşkan, A., & Çatı, K. (2021). Investigation of consumer behavior in market shopping in the gender context. Elektronik Sosyal Bilimler Dergisi, 20(77), 255-272. https://doi.org/10.17755/esosder.767017
- Shamsher, R. (2016). Store image and its impact on consumer behavior. Elk Asia Pacific Journal of Marketing and Retail Management, 7, (2), 1-27. ISSN 0976-7193. https://www.researchgate.net/project/STORE-IMAGE-AND-ITS-IMPACT-ON-CONSUMER-BEHAVIOR
- Šostar, M., & Ristanović, V. (2022). Assessment of influencing factors on consumer behavior using the AHP model. Sustainability, 15(13), 10341. https://doi.org/10.3390/su151310341
- Sugumaran, V., & Ramachandran, K.I. (2007). Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing. Mechanical Systems and Signal Processing, 21, 2237–2247. https://doi.org/10.1016/j.ymssp.2006.09.007
- Sun, K., Likhate, S., Vittal, V., Kolluri, V.S., & Mandal, S. (2007). An online dynamic security assessment scheme using phasor measurements and decision trees. IEEE Transactions on Power Systems, 22(4), 1935-1943. https://doi.org/10.1109/TPWRS.2007.908476
- Taylor, M.J., Kwasnica, V., Reilly, D., & Ravindran, S. (2019). Game theory modelling of retail marketing discount strategies. Marketing Intelligence and Planning, 37(5), 555-566. ISSN 0263-4503.
- Terano, R., Yahya, R., Mohamed, Z., & Saimin S. (2015). Factor influencing consumer choice between modern and traditional retailers in Malaysia. International Journal of Social Science and Humanity, 5(6). https://doi.org/10.7763/IJSSH.2015.V5.509
- Thakur, P., Mehta, P., Devi, C., Sharma, P., Singh, K.K., Yadav, S., Lal, P., Raghav, Y.S., Kapoor, P., & Mishra, P. (2023). Marketing performance and factors influencing farmers choice for agricultural output marketing channels: The case of garden pea (Pisum sativum) in India. Frontiers in Sustainable Food Systems, 7, 1270121. https://doi.org/10.3389/fsufs.2023.1270121
- Tian, X., Cao, S., & Song, Y. (2021). The impact of weather on consumer behavior and retail performance: Evidence from a convenience store chain in China. Journal of Retailing and Consumer Services, 62. https://doi.org/10.1016/j.jretconser.2021.102583
- Veeck, A., & Veeck, G. (2000). Consumer segmentation and changing food purchase patterns in Nanjing”, PRC. World Development, 28(3), 457-471. https://doi.org/10.1016/S0305-750X(99)00135-7
- Vindigni, G., Peri, I., Consentino, F., Selvaggi, R., & Spina, D. (2022). Exploring consumers attitudes towards food products derived by new plant breeding techniques. Sustainability, 14(10). https://doi.org/10.3390/su14105995
- Walkinshaw, N. (2013). Reverse-engineering software behavior, Memon, A., Advances in Computers PP 1-58 in Elsevier.
- Yildirim, K., Cagatay, K., & Hidayetoğlu, M.L. (2015). The effect of age, gender and education level on customer evaluations of retail furniture store atmospheric attributes. International Journal of Retail & Distribution Management, 43(8), 712-726. https://doi.org/10.1108/IJRDM-01-2013-0034
- Zaki, M.J., & Meira, W. (2020). Data mining and machine learning: Fundamental concepts and algorithms. Cambridge University Press.
- Zulqarnain, H., Zafar, A.U., & Shahzad, M. (2015). Factors that affect the choice of consumers in selecting retail store, for grocery shopping. International Journal of Multidisciplinary and Current Research, 3(1), 1167-1172S. http://ijmcr.com
|