- Abdelraheem, A., Esmaeili, N., O’Connell, M., & Zhang, J. (2019). Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops and Products, 130, 118-129. https://doi.org/10.1016/j.indcrop.2018.12.070
- Abdel-Salam, E., Alatar, A., & El-Sheikh, M. A. (2018). Inoculation with arbuscular mycorrhiza fungi alleviates harmful effects of drought stress on damask rose. Saudi Journal of Biological Sciences, 25, 1772–1780. https://doi.org/10.1016/j.sjbs.2017.10.015
- Acosta-Motos, J.R., Maria Fernanda, O., Agustin, B., Pedro, D.V., Maria, J.B., & Jose Antonio, H. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018
- Akbari, S., Dashti, F., & Gholami, M. (2011). Effect of salinity stress on performance and some biochemical and physiological characteristics of Iranian leek. 7th Congress of Iranian Horticultural Science, Isfahan, Iran. (In Persian with English abstract). https://civilica.com/doc/174155
- Arvin, P. (2015). Effect of gibberellin on some morphological traits, photosynthetic pigments content and proline in savory (Satureja hortensis) under salinity stress conditions. Journal of Agricultural Research, 7(2), 90-104.
- Betran, F.J., Beck, D., Banziger, M., & Edmeades, G.O. (2003). Secondary traits in parental inbreeds and hybrids under stress and nonstress environments in tropical maize. Field Crops Research, 83, 51-65. https://doi.org/10.1016/S0378-4290(03)00061-3
- Choudhary, R.C., Kumaraswamy, R.V., Kumari, S., Sharma, S.S., Pal, A., Raliya, R., & Saharan, V. (2017). Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays). Scientific Reports, 7(1), 9754. Https://doi.org/10.1038/s41598-017-08571-0
- Croser, C., Renault, S., Franklin, J., & Zwiazek, J. (2001). The effect of salinity on the emergence and seedling growth of Picea morian, Piccea glausa and Pinus banksiana. Environmental Pollution, 115, 6-16. https://doi.org/10.1016/S0269-7491(01)00097-5
- Da Costa, M.V.J., & Sharma, P.K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica, 54, 110-119. https://doi.org/10.1007/s11099-015-0167-5
- Della Maggiora, L., Francini, A., & Giovannelli, A.(2023). Assessment of the salinity tolerance, response mechanisms and nutritional imbalance to heterogeneous salt supply in Populus alba clone ‘Marte’ using a split-root system. Plant Growth Regul, 101, 251–265. https://doi.org/10.1007/s10725-023-01017-w
- Farouk, S., & Al-Amri, S.M. (2019). Ameliorative roles of melatonin and/or zeolite on chromium-induced leaf senescence in marjoram plants by activating antioxidant defense, osmolyte accumulation, and ultrastructural modification. Industrial Crops and Products, 142, 111823. https://doi.org/10.1016/j.indcrop.2019.111823
- Fattahi, M., Mohammadkhani, A., Shiran, B., Baninasab, B., & Ravash, R. (2021). Investigation of phosphorus use efficiency and drought and salinity stress resistance index in pistachio rootstocks coexisted with mycorrhiza arbuscular. Plant Productions, 44(4), 587-600. (In Persian with English abstract). https://doi.org/10.22055/ppd.2020.33219.1894
- Fischer, R.A., & Maurer, R. (1998). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29, 897-912. https://doi.org/10.1071/AR9780897
- Gholamzadeh Alam, A., Mousavi-Fard, S., & Rezaei Nejad, A. (2022). Morphological and physiological characteristics for evaluation of salicylic acid effects on Celosia argentea under salinity stress. Iranian Journal of Plant Physiology, 12(1), 4027-4037. https://doi.org/10.30495/ijpp.2022.689078
- Gorgini Shabankareh, H., Khorasaninejad, S., & Soltanloo, H. (2021). Physiological response and secondary metabolites of three lavender genotypes under water deficit. Scientific Reports, 11(1), 19164. https://doi.org/10.1038/s41598-021-98750-x
- Guzman, M.R., & Marques, I. (2023). Effects of salinity on edible marigold flowers (Tagetes patula). Biology Life Science Forum, 27, 38. https://doi.org/10.3390/IECAG2023-15986
- Hejazi, M. M., Shariatmadari, H., Khoshgoftarmanesh, A. H., & Dehghani, F. (2012). Copper effects on growth, lipid peroxidation, and total phenolic content of rosemary leaves under salinity stress. Journal of Agricultural Science and Technology, 14, 205-212.
- Hernandez-Hernandez, H., Juárez-Maldonado, A., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G., Sánchez-Aspeytia, D., & González-Morales, S. (2018). Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy, 8(9), 175. https://doi.org/10.3390/agronomy8090175
- Jampeetonga, A., & Brix, H. (2009). Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquatic Botany, 3, 181-186. https://doi.org/10.1016/j.aquabot.2009.05.003
- Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., & Sharma, A. (2020). The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10, 5692. https://doi.org/10.3390/app10165692
- Lawlor, W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environment, 25, 275–294.https://doi.org/10.1046/j.0016-8025.2001.00814.x
- Lichtenthaler, H.K. (1987). Chlorophyll and carotenoids–pigments of photosynthetic biomembrances za Colowick SP, Kaplan NO Methods in Enzymology, Vol. 148.
- Lutts, S., Kinet, J.M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398. https://doi.org/10.1006/anbo.1996.0134
- MacAdam, J.W., Nelson, C.J., & Sharp, R.E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3), 872-878. https://doi.org/10.1104/pp.99.3.872
- Nabati, J., Kafi, M., Nezami, A., Rezvani Moghaddam, P., Masoumi, A., & Zare Mehrjerdi, M. (2012). Evaluation of quantitative and qualitative characteristic of forage kochia in different growth under salinity stress. Journal of Crop Production, 5(2), 111-128. (In Persian with English abstract). http://dorl.net/dor/1001.1.2008739.1391.5.2.7.8
- Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
- Noman, M., Ahmed, T., Shahid, M., Niazi, M.B.K., Qasim, M., Kouadri, F., & Ali, S. (2021). Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. Ecotoxicology and Environmental Safety, 217, 112264. https://doi.org/10.1016/j.ecoenv.2021.112264
- Osakabe, Y., Yamaguchi‐Shinozaki, K., Shinozaki, K., & Tran, L.S.P. (2014). ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist, 202(1), 35-49. https://doi.org/10.1111/nph.12613
- Panahandeh, J. (2015). Meiosis in persian leek Allium ampeloprasum persicum. In VII International Symposium on Edible Alliaceae, 1143, 23-26. https://doi.org/10.17660/ActaHortic.2016.1143.4
- Pérez-Labrada, F., López-Vargas, E.R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants, 8(6), 151. https://doi.org/10.3390/plants8060151
- Radi, A.F. (2013). Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. Journal of Biology and Earth Sciences, 3, 72-88.
- Raza, A., Tabassum, J., Fakhar, A. Z., Sharif, R., Chen, H., Zhang, C., & Varshney, R.K. (2023). Smart reprograming of plants against salinity stress using modern biotechnological tools. Critical Reviews in Biotechnology, 43(7), 1035-1062. https://doi.org/10.1080/07388551.2022.2093695
- Ritchie, S.W., Nguyen, H.T., & Holaday, A.S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1), 105-111. https://doi.org/10.2135/cropsci1990.0011183X003000010025x
- Roozbahani, F., Mousavi-Fard, S., & Nejad, A.R. (2020). Effect of proline on some physiological and biochemical characteristics of two cultivars of Impatiens walleriana under salt stress. Iranian Journal of Horticultural Science, 51(3), 537-550. (In Persian with English abstract). https://doi.org/10.22059/ijhs.2019.279774.1632
- Safari, M., Mousavi-Fard, S., Rezaei Nejad, A., Sorkheh, K., & Sofo, A. (2022). Exogenous salicylic acid positively affects morpho-physiological and molecular responses of Impatiens walleriana plants grown under drought stress. International Journal of Environmental Science and Technology, 19(2), 969–984. https://doi.org/10.1007/s13762-020-03092-2
- Siddiqi, K.S., & Husen, A. (2020). Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: A review. Biomaterials Research, 24(1), 1-15. https://doi.org/10.1186/s40824-020-00188-1
- Starman, T., & Lombardini, L. (2006). Growth, gas exchange and chlorophyll fluorescence of four ornamental herbaceous perennials during water deficit conditions. Journal American Horticultural Science, 131(4), 475.
- Tabatabaee S., Iranbakhsh, A., Shamili, M., & Oraghi Ardebili Z. (2021). Copper nanoparticles mediated physiological changes and transcriptional variations in microRNA159 (miR159) and mevalonate kinase (MVK) in pepper; potential benefits and phytotoxicity assessment. Journal of Environmental Chemical Engineering, 9(5), 106151. https://doi.org/10.1016/j.jece.2021.106151
- Thounaojam, T.C., Panda, P., Mazumdar, P., Kumar, D., Sharma, G.D., Sahoo, L., & Sanjib, P. (2012). Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiology and Biochemistry, 53, 33-39. https://doi.org/10.1016/j.plaphy.2012.01.006
- Vinaya Rai, R.S., & Parthiban, K.T. (1995). Studies on the drought tolerance of Eucalyptus at seedling stage. Journal Tropical For Science, 8(2), 155–160. https://www.jstor.org/stable/43582472
- Vojodi Mehrabani, L., Valizadeh Kamran, R., Khurizadeh, S., & Seiied Nezami, S. (2018). Response of coriander to salinity stress. Journal of Plant Physiology and Breeding, 8(2), 89-98. https://doi.org/10.22034/JPPB.2018.9804
- Wang, F., Zeng, B., Sun, Z., & Zhu, C. (2009). Relationship between proline and Hg2+- induced oxidative stress in a tolerant rice mutant. Archives of Environmental Contamination and Toxicology, 56, 723-731. https://doi.org/10.1007/s00244-008-9226-2
- Zhang, H.Z. (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus). Journal of Pineal Research, 57, 269-279. https://doi.org/10.1111/jpi.12167
|