- Abdelaal, K., Attia, K. A., Niedbała, G., Wojciechowski, T., Hafez, Y., Alamery, S., & Arafa, S. A. (2021). Mitigation of drought damages by exogenous chitosan and yeast extract with modulating the photosynthetic pigments, antioxidant defense system and improving the productivity of garlic plants. Horticulturae, 7(11), 510. https://doi.org/10.3390/horticulturae7110510
- Agricultural statistics of the crop year 2020-2021, first volume: Crops. Ministry of Agricultural Jihad, Planning and Economic Deputy, Information and Communication Technology Center, 2021. (in Persian).
- Ahmed, K. B. M., Khan, M. M. A., Siddiqui, H., & Jahan, A. (2020). Chitosan and its oligosaccharides, a promising option for sustainable crop production-a review. Carbohydrate Polymers, 227, 115331. https://doi.org/10.1016/j.carbpol.2019.115331
- Ahmed, M. E. M., Ragab, M. E., Al-Araby, A. A., & Rehab, M. (2019). Effect of nano particles of chitosan, calcium and copper on growth, yield, quality and storability of onion (Allium cepa). 9th International Conference for Sustainable Agricultural Development 4-6 March.
- Ali, E. F., El-Shehawi, A. M., Ibrahim, O. H. M., Abdul-Hafeez, E. Y., Moussa, M. M., & Hassan, F. A. S. (2021). A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiology and Biochemistry, 161, 166-175. https://doi.org/10.1016/j.plaphy.2021.02.008
- Aliasgharzad, N., Bolandnazar, S., Neyshabouri, M., & Chaparzadeh, N. (2009). Impact of soil sterilization and irrigation intervals on P and K acquisition by mycorrhizal onion (Allium cepa). Biologia, 64(3), 512-515. https://doi.org/10.2478/s11756-009-0072-0
- Arif, Y., Siddiqui, H., & Hayat, S. (2022). Role of chitosan nanoparticles in regulation of plant physiology under abiotic stress. In Sustainable Agriculture Reviews 53: Nanoparticles: A New Tool to Enhance Stress Tolerance Cham: Springer International Publishing. (pp. 399-413). https://doi.org/10.1007/978-3-030-86876-5_16
- Asim, A., GÖKÇE, Z. N. Ö., Bakhsh, A., ÇAYLI, İ. T., Aksoy, E., ÇALIŞKAN, S., & Demirel, U. (2021). Individual and combined effect of drought and heat stresses in contrasting potato cultivars overexpressing miR172b-3p. Turkish Journal of Agriculture and Forestry, 45(5), 651-668. https://doi:10.3906/tar-2103-60
- Attaran Dowom, S., Karimian, Z., Mostafaei Dehnavi, M., & Samiei, L. (2022). Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biology, 22(1), 364. https://doi.org/10.1186/s12870-022-03689-4
- Bakhoum, G., Sadak, M., & Tawfic, M. (2022). Chitosan and chitosan nanoparticle effect on growth, productivity and some biochemical aspects of Lupinus termis L plant under drought conditions. Egyptian Journal of Chemistry, 65(5), 537-549. https://10.21608/EJCHEM.2021.97832.4563
- Behboudi, F., Tahmasebi-Sarvestani, Z., Kassaee, M. Z., Modarres-Sanavy, S. A. M., Sorooshzadeh, A., & Mokhtassi-Bidgoli, A. (2019). Evaluation of chitosan nanoparticles effects with two application methods on wheat under drought stress. Journal of Plant Nutrition, 42(13), 1439-1451. https://doi.org/10.1080/01904167.2019.1617308
- Bekele, S., & Tilahun, K. (2007). Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia. Agricultural Water Management, 89(1-2), 148-152. https://doi.org/10.1016/j.agwat.2007.01.002
- Brewster, J. L. )1979(. The response of growth rate to temperature in seedlings of several Allium crop species. Annals of Applied Biology, 93, 351-357.
- Bittelli, M., Flury, M., Campbell, G. S., & Nichols, E. J. (2001). Reduction of transpiration through foliar application of chitosan. Agricultural and Forest Meteorology, 107(3), 167-175. https://doi.org/10.1016/S0168-1923(00)00242-2
- Boonlertnirun, S., Sarobol, E. D., Meechoui, S., & Sooksathan, I. (2007). Drought recovery and grain yield potential of rice after chitosan application. Agriculture and Natural Resources, 41(1), 1-6. https://doi.org/10.3390/plants10061160
- Bosekeng, G. (2012). Response of onion (Allium cepa) to sowing date and plant population.
- Brewster, J. L. (1990). Physiology of crop growth and bulbing. In: Rabinovitch HD, Brewster JL, eds. Onions and allied crops. Vol. I. Botany, physiology and genetics. Boca Raton, Florida, USA: CRC Press, Inc., 53-88.
- Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Scientific Reports, 5(1), 15195. https://doi:10.1038/srep15195
- Chaudhry, U. K., Gökçe, Z. N., & Gökçe, A. F. (2020). Effects of salinity and drought stresses on the physio-morphological attributes of onion cultivars at bulbification stage. International Journal of Agriculture and Biology, 24(6), 168-189. https://doi:10.17957/IJAB/15.1611
- Eksteen, G. J., Van Den Klashorst, E., & Van Ziji, B. (1997). Onions for export harvesting, handling and storage. Onions J.2. Agricultural Research Council, Vegetable and Ornamental Plant Institute, Pretoria, South Africa.
- Enchalew, B., Gebre, S. L., Rabo, M., Hindaye, B., Kedir, M., Musa, Y., & Shafi, A. (2016). Effect of deficit irrigation on water productivity of onion (Allium cepa) under drip. Irrigation & Drainage Systems Engineering, 5(172), 2. https://doi:10.4172/2168-9768.1000172
- FAO. (2018). FAOSTAT- countries by commodity. Available online at: http://www.fao.org/faostat/en/#rankings/countries_by_commodity
- FAO. (2020). Crop Production. data: http:/www.faostat.fao.org
- Farouk, S., & Amany, A. R. (2012). Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egyptian Journal of Biology, 14, 14-16. https://doi:10.4314/ejb.v14i1.2
- Fawzy, Z. F., El-Shal, Z. S., Li YunSheng, L. Y., Zhu OuYang, Z. O., & Sawan, O. M. (2012). Response of garlic (Allium sativum) plants to foliar spraying of some bio-stimulants under sandy soil condition. Journal of Applied Sciences Research, 8(2), 770-776. https://doi:10.5555/20123174116
- Geries, L. S. M., Omnia, H. S., & Marey, R. A. (2020). Soaking and foliar application with chitosan and nano chitosan to enhancing growth, productivity and quality of onion crop. Plant Cell Biotechnology and Molecular Biology, 20(2), 3584-91.
- Ghasemi Pirbalouti, A., Malekpoor, F., Salimi, A., & Golparvar, A. (2017). Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Scientia Horticulturae, 217, 114-122. https://doi.org/10.1016/j.scienta.2017.01.031
- Ghodke, P. H., Shirsat, D. V., Thangasamy, A., Mahajan, V., Salunkhe, V. N., Khade, Y., & Singh, M. (2018). Effect of water logging stress at specific growth stages in onion crop. International Journal of Current Microbiology and Applied Sciences, 7(1), 3438-3448. https://doi.org/10.20546/ijcmas.2018.701.405
- Ghodke, P., Khandagale, K., Thangasamy, A., Kulkarni, A., Narwade, N., Shirsat, D., & Singh, M. (2020). Comparative transcriptome analyses in contrasting onion (Allium cepa) genotypes for drought stress. Frontiers in Plant Science, 15(8), e0237457. https://doi.org/10.1371/journal.pone.0237457
- Gürel, F., Öztürk, N. Z., & Uçarlı, C. (2016). Transcriptomic responses of barley (Hordeum vulgare) to drought and salinity. Plant Omics: Trends and Applications, 159-188. Springer, Cham. https://doi.org/10.1007/978-3-319-31703-8_
- Gwandu, H. A., & Idris, F. (2016). Effect of irrigation intervals on growth and yield of onion (allium cepa) in Bunza, Kebbi state, Nigeria. International Journal of Research in Engineering and Science, 4(9), 42-45. https://doi.org/10.1155/2022/4655590
- Hafez, Y., Attia, K., Alamery, S., Ghazy, A., Al-Doss, A., Ibrahim, E., & Abdelaal, K. (2020). Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy, 10(5), 630. https://doi.org/10.3390/agronomy10050630
- Hao, T., Yang, Z., Liang, J., Yu, J., & Liu, J. (2023). Foliar application of carnosine and chitosan improving drought tolerance in bermudagrass. Agronomy, 13(2), 442. https://doi.org/10.3390/agronomy13020442
- Howlett, B. J. (2006). Secondary metabolite toxins and nutrition of plant pathogenic fungi. Current Opinion in Plant Biology, 9(4), 371-375. https://doi.org/10.1016/j.pbi.2006.05.004
- Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25, 313-326. https://doi.org/10.1007/s12298-018-0633-1
- Islam, M. M., Kabir, M. H., Mamun, A. N. K., Islam, M., & Das, P. (2018). Studies on yield and yield attributes in tomato and chilli using foliar application of oligo-chitosan. GSC Biological and Pharmaceutical Sciences, 3(3), 20-28.
- Junaid, M. D., Chaudhry, U. K., & Gökçe, A. F. (2021). Climate change and plant growth–South Asian perspective. Climate Change Plants, 37-53. https://doi.org/10.1201/9781003109037
- Kazemi, A., & Ghorbanpour, M. (2017). Introduction to environmental challenges in all over the world. Medicinal Plants and Environmental Challenges, 25-48. https://doi.org/10.1007/978-3-319- 68717-9_2
- Kamenetsky, R., & Rabinowitch, H. D. (2006). The genus Allium: A developmental and horticultural analysis. Horticultural Reviews, 32, 329-378. https://doi.org/10.1002/9780470767986
- Khokhar, K. M. (2017). Environmental and genotypic effects on bulb development in onion–a review. The Journal of Horticultural Science and Biotechnology, 92(5), 448-454. https://doi.org/10.1080/14620316.2017.1314199
- Lei, C., Ma, D., Pu, G., Qiu, X., Du, Z., Wang, H., & Liu, B. (2011). Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua Industrial Crops and Products, 33(1), 176-182. https://doi.org/10.1016/j.indcrop.2010.10.001
- Li, Z., Zhang, Y., Zhang, X., Merewitz, E., Peng, Y., Ma, X., & Yan, Y. (2017). Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. Journal of Proteome Research, 16(8), 3039-3052. https://doi.org/10.1021/acs.jproteome.7b00334
- Malerba, M., & Cerana, R. (2019). Recent applications of chitin-and chitosan-based polymers in plants. Polymers, 11(5), 839. https://doi.org/10.3390/polym11050839
- Mehta, I. (2017). Origin and history of onions. IOSR Journal of Humanities and Social Science, 22(9), 7-10. https://doi.org/10.9790/0837-2209130710
- Mirajkar, S. J., Dalvi, S. G., Ramteke, S. D., & Suprasanna, P. (2019). Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. International Journal of Biological Macromolecules, 139, 1212-1223. https://doi.org/10.1016/j.ijbiomac.2019.08.093
- Mubarak, I., & Hamdan, A. (2018). Onion crop response to regulated deficit irrigation under mulching in dry Mediterranean region. Journal of Horticultural Research, 26(1). https://doi.org/10.2478/johr-2018-0010
- Muhammad, A., Gambo, B. A., & Ibrahim, N. D. (2011). Response of onion (Allium cepa) to irrigation intervals and plant density in Zuru, Northern Guinea Savanna of Nigeria. Nigerian Journal of Basic and Applied Sciences, 19(2), 241-247. https://doi.org/10.1093/ajcn/51.2.241
- Nurga, Y., Alemayehu, Y., & Abegaz, F. (2020). Effect of deficit irrigation levels at different growth stages on yield and water productivity of onion (Allium cepa) at Raya Azebo Woreda, Northern Ethiopia. Ethiopian Journal of Agricultural Sciences, 30(3), 155-176. https://doi.org/10.14662/ARJASR2017.042
- Pavlović, N., Zdravković, M., Gvozdanović-Varga, J., Mladenović, J., Pavlović, R., & Zdravković, J. (2016). Heredity mode of onion (Allium cepa) bulb shape index. Ratarstvo i povrtarstvo, 53(3), 85-89.
- Pike, M. L. (1986). Onion breeding. In: Breeding Vegetable Crops, M. J. Bassett. The AVI publishing company. USA. 357-394.
- Piri, H., & Naserin, A. (2020). Effect of different levels of water, applied nitrogen and irrigation methods on yield, yield components and IWUE of onion. Scientia Horticulturae, 268, https://doi.org/10.1016/j.scienta.2020.109361
- Pongprayoon, W., Roytrakul, S., Pichayangkura, R., & Chadchawan, S. (2013). The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa). Plant Growth Regulation, 70, 159-173. https://doi.org/10.1007/s10725-013-9789-4
- Radman, R., Saez, T., Bucke, C., & Keshavarz, T. (2003). Elicitation of plants and microbial cell systems. Biotechnology and Applied Biochemistry, 37(1), 91-102. https://doi.org/10.1042/BA20020118
- Ramachandra, C. T., & Rao, P. S. (2008). Processing of Aloe vera leaf gel: a review. American Journal of Agricultural and Biological Sciences, 3(2), 502-510. https://doi.org/10.3844/ajabssp.2008.502.510
- Rabêlo, V. M., Magalhães, P. C., Bressanin, L. A., Carvalho, D. T., Reis, C. O. D., Karam, D., & Souza, T. C. D. (2019). The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Scientific Reports, 9(1), 8164. https://doi.org/10.1038/s41598-019-44649-7
- Rameshjan, Y. (2023). The effects of planting methods and patterns on agroecological characteristics of onion (Allium cepa) in two heterogeneous microclimates in Hormozgan province. Ph.D. Dissertation Agroecology, Faculty of Agriculture, Ferdowsi University of Mashhad. (in Persian with English abstract).
- Rao, N. S., Laxman, R. H., & Shivashankara, K. S. (2016). Physiological and morphological responses of horticultural crops to abiotic stresses. Abiotic Stress Physiology of Horticultural Crops, 3-17. https://doi.org/10.1007/978-81-322-2725-0_1
- Rhaman, M. S., Rauf, F., Tania, S. S., & Khatun, M. (2020). Seed priming methods: Application in field crops and future perspectives. Asian Journal of Research in Crop Science, 5(2), 8-19. https://doi.org/10.9734/AJRCS/2020/v5i230091
- Shamekh, M., Jafari, L., & Farzin, A. (2021). Ameliorating effect of proline, chitosan and its derivatives on photosynthetic pigments, chlorophyll fluorescence indices, qualitative characteristics and yield of greenhouse tomato (Lycopersicon esculentum) under deficit irrigation conditions. Journal of Plant Process and Function Iranian Society of Plant Physiology, 10(41), 77-95. (in Persian with English abstract). 20.1001.1.23222727.1400.10.41.18.8
- Singh, V. K., Singh, A. K., Singh, P. P., & Kumar, A. (2018). Interaction of plant growth promoting bacteria with tomato under abiotic stress: a review. Agriculture, Ecosystems & Environment, 267, 129-140. https://doi.org/10.1016/j.agee.2018.08.020
- Tadesse, T., Sharma, P. D., & Ayele, T. (2022). Effect of the Irrigation Interval and Nitrogen Rate on Yield and Yield Components of Onion (Allium cepa) at Arba Minch, Southern Ethiopia. Advances in Agriculture, 2022. https://doi.org/10.1155/2022/4655590
- Turhan, A., & Kuşçu, H. (2020). The Influence of irrigation water salinity and humic acid on nutrient contents of onion (Allium cepa). Journal of Agricultural Sciences, 26(2), 147-153. https://doi.org/10.15832/ankutbd.459907
- Wakchaure, G. C., Minhas, P. S., Meena, K. K., Singh, N. P., Hegade P. M., & Sorty, A. M. (2018). Growth, bulb yield, water productivity and quality of onion (Allium cepa ) as affected by deficit irrigation regimes and exogenous application of plant bio–regulators. Agricultural Water Management, 199, 1-10. https://doi.org/10.1016/j.agwat.2017.11.026
- Wang, Xh. H., Li, D. P., Wang, W. G., Feng, Q. L., Cui, F. Z., Xu, Y. X., Song, X. H., & Vander Werf, M. (2003). Cross linked collagen/chitosan matrix for artificial livers. Biomat, 24, 3213-3220. https://doi.org/10.1016/s0142-9612(03)00170-4.
- Ward, F. A., & Pulido-Velazquez, M. (2008). Water conservation in irrigation can increase water use. Proceedings of the National Academy of Sciences, 105(47), 18215-18220. https://doi.org/10.1073/pnas.0805554105
- Yin, H., Fretté, X. C., Christensen, L. P., & Grevsen, K. (2012). Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare hirtum). Journal of Agricultural and Food Chemistry, 60(1), 136-143. https://doi.org/10.1021/jf204376j
- Zayed, M. M., Elkafafi, S. H., Zedan, A. M., & Dawoud, S. F. (2017). Effect of nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Production, 8(5), 577-585. https://doi.org/10.21608/JPP.2017.40468
- Zhao, D. X., Fu, C. X., Han, Y. S., & Lu, D. P. (2005). Effects of elicitation on jaceosidin and hispidulin production in cell suspension cultures of Saussurea medusa. Process Biochemistry, 40(2), 739-745. https://doi.org/10.1016/j.procbio.2004.01.040
- Zhang, C., Yan, Q., Cheuk, W. K., & Wu, J. (2004). Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+ elicitation and nutrient feeding. Planta Medica, 70(02), 147-151. https://doi.org/10.1055/s-2004-815492
- Zhang, Y., Mian, M. A. R., & Bouton, J. H. (2006). Recent molecular and genomic studies on stress tolerance of forage and turf grasses. Crop Science, 46(2), 497-511. https://doi.org/10.2135/cropsci2004.0572
- Zheng, J., Huang, G., Wang, J., Huang, Q., Pereira, L. S., Xu, X., & Liu, H. (2013). Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (Allium cepa L.) in an arid region of Northwest China. Irrigation Science, 31, 995-1008. https://doi.org/10.1007/s00271-012-0378-5
|