[1] N. Kumar, W. Yuan, S. Rajiv, and Mishra, Friction Stir Welding of Dissimilar Alloys and Materials, 1nd ed, Elsevier, 2015, https://doi.org/10.1016/C2014-0-01707-8
[2] W. Thomas, “Friction stir butt welding, International Patent Application,” International Patent Application PCT/GB92, Patent Application GB9125978.8, 6, December 1991.
[3] R. S. Mishra, and Z. Y. Ma, “Friction stir welding and processing, ” Materials Science and Engineering: R: Reports, vol. 50, no. 1-2, pp 70–78, 2005. https://doi.org/10.1016/j.mser.2005.07.001
[4] N. Mathan Kumar, S. Senthil Kumaran, and L. A. Kumaraswamidhas, “Aerospace application on Al 2618 with reinforced – Si3N4, AlN and ZrB2 in-situ composites, ” Journal of Alloys and Compounds, vol. 672, no. 1, pp 238–250, 2016. https://doi.org/10.1016/j.jallcom.2016.02.155
[5] R. K. Uyyuru, M. K. Surappa, and S. Brusethaug, “Tribological behavior of Al-Si-SiCp composites/automobile brake pad system under dry sliding conditions,” Tribology International, vol. 40, no. 2, pp. 365–373, 2007. https://doi.org/10.1016/j.triboint.2005.10.012
[6] P. Cavaliere, “Mechanical properties of friction stir processed 2618/Al2O3/20p metal matrix composite,” Composites Part A: Applied Science and Manufacturing, vol. 36, pp. 1657–1665, 2005. https://doi.org/10.1016/j.compositesa.2005.03.016
[7] P. Cavaliere, E. Cerri, L. Marzoli, and J. D. Santos, “Friction stir welding of ceramic particle reinforced aluminum based metal matrix composites,” Applied Composite Materials, vol. 11, no. 4, pp. 247–258, 2004. https://doi.org/10.1023/B:ACMA.0000035478.71092.ec
[8] K. Nakata, S. Inoki, Y. Nagano, and M. Ushio, “Friction stir welding of Al2O3 particulate 6061 Al alloy composite,” Materials Science Forum, vol. 426-432, no. 4, pp. 2873–2878, 2003. https://doi.org/10.4028/www.scientific.net/MSF.426-432.2873
[9] L. Ceschini, I. Boromei, G. Minak, A. Morri, and F. Tarterini, “Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10vol % Al2O3p composite,” Composites Science and Technology, vol. 67, no. 3-4, pp. 605–615, 2007. https://doi.org/10.1016/j.compscitech.2006.07.029
[10] H. Uzun, “Friction stir welding of SiC particulate reinforced AA2124 aluminum alloy matrix composite,” Materials & Design, vol. 28, no. 5, pp. 1440–1446, 2007. https://doi.org/10.1016/j.matdes.2006.03.023
[11] L. M. Marzoli, A. V. Strombeck, J. F. D. Santos, C. Gambaro, and L. M. Volpone, “Friction stir welding of an AA6061/Al2O3/20p reinforced alloy,” Composites Science and Technology, vol. 66, no. 2, pp. 363–371, 2006. https://doi.org/10.1016/j.compscitech.2005.04.048
[12] K. A. A. Hassan, A. F. Norman, D. A. Price, and P. B. Prangnell, “Stability of nugget zone grain structures in high strength Al-alloy friction stir welds during solution treatment,” Acta Materialia, vol. 51, no. 7, pp. 1923–1936, 2003. https://doi.org/10.1016/S1359-6454(02)00598-0
[13] M. Saeidi, M. Barmouz, and M. K. Besharati Givi, “Investigation on AA5083/AA7075+Al2O3 Joint Fabricated by Friction Stir Welding: Characterizing Microstructure, Corrosion and Toughness Behavior,” Materials research, vol. 18, no. 6, pp. 1156-1162, 2015. https://doi.org/10.1590/1516-1439.357714
[14] A. H. Feng, B. L. Xiao, and Z. Y. Ma, “Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite,” Composites Science and Technology, vol. 68, no. 9, pp. 2141–2148, 2008. https://doi.org/10.1016/j.compscitech.2008.03.010
[15] H. Lombard, D. G. Hattingh, A. Steuwer, and M. N. James, “Optimising FSW process parameters to minimise defects and maximise fatigue life in 5083-H321 aluminium alloy,” Engineering Fracture Mechanics, vol. 75, no. 3–4, pp. 341–354, 2008. https://doi.org/10.1016/j.engfracmech.2007.01.026
[16] H. Bisadi, A. Tavakoli, M. Tour Sangsaraki, and K. Tour Sangsaraki, “The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints,” Materials & Design, vol. 43, no. 1, pp. 80–88, 2013. https://doi.org/10.1016/j.matdes.2012.06.029
[17] M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C. F. Yen, B. A. Cheeseman, A. P. Reynolds, and M. A. Sutton, “Computational analysiss of material flow during friction sitr welding of AA5059 aluminum alloy,” Journal Mater. Eng. Perform, vol. 21, no. 9, pp. 1824-1840, 2012. https://doi.org/10.1007/s11665-011-0069-z
[18] I. Shigematsu, Y. J. Kwon, K. Suzuki, T. Imai, and N. Saito, “Joining of 5083 and 6061 aluminum alloys by friction stir welding,” Journal of Materials Science Letters, vol. 22, no. 5, pp. 353–356, 2003. https://doi.org/10.1023/A:1022688908885
[19] M. S. Han, S. J. Lee, J. C. Park, S. C. Ko, Y. B. Woo, and S. J Kim, “Optimum condition by mechanical characteristic evaluation in friction stir welding for 5083-O Al alloy,” Transactions of Nonferrous Metals Society of China, vol. 19, no. 1, pp. 17–22, 2009. https://doi.org/10.1016/S1003-6326(10)60238-5
[20] J. J. S. Dilip, M. Koilraj, V. Sundareswaren, G. D. Janaki Ram, and S. R. Koteswara Rao, “Microstructural characterization of dissimilar friction stir welds between AA2219 and AA5083,” Transactions of the Indian Institute of Metals, vol. 63, no. 3, pp. 757–64, 2010. https://doi.org/10.1007/s12666-010-0116-8
[21] G. Liu, L. E. Murr, C. S. Niou, J. C. Mclure, and F. R. Vega, “Microstructural aspects of the friction stir welding of 6061-T6 aluminum,” Scripta Materialia, vol. 37, no. 1, pp. 355-361, 1997. https://doi.org/10.1016/S1359-6462(97)00093-6
[22] Y. S. Sato, H. Kokawa, M. Enomoto, and Sh. Jordan, “Microstructural evolution of 6063 aluminum during friction stir welding,” Metallurgical and Materials Transactions A, vol. 30, no. 9, pp. 2429-2437, 1999. https://doi.org/10.1007/s11661-999-0251-1
[23] F. J. Humphreys, and R. Priestner, “Fine-grained alloys by thermomechanical processing,” Current Opinion in Solid State and Materials Science, vol. 5, no. 1, p. 15-21, 2001. https://doi.org/10.1016/S1359-0286(00)00020-6
[24] J. Q. Su, T. W. Nelson, R. S. Mishra, and M. Mahoney, “Microstructural investigation of friction stir welded 7050- T651 aluminum,” Acta Materialia, vol. 51, no. 3, pp. 713-729, 2003. https://doi.org/10.1016/S1359-6454(02)00449-4
[25] K. V. Jata, K. K. Sankaran, and J. J. Ruschau, “Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451,” Metallurgical and Materials Transactions A, vol. 31(9), pp. 2181-2192, 2012. https://doi.org/10.1007/s11661-000-0136-9
[26] A. Shamsipur, S. F. Kashani-Bozorg, and A. Zarei-Hanzaki, “The effects of friction-stir process parameters on the fabrication of Ti/SiC nanocomposite surface layer,” Surface and Coatings Technology, vol. 206, no. 6, pp. 1372-1381, 2011. https://doi.org/10.1016/j.surfcoat.2011.08.065
[27] K. Y. Wang, T. D. Shen, M. X. Quan, and W. D. Wei, “HalI-Petch relationship in nanocrystalline titanium produced by ball-milling,” Journal of Materials Science Letters, vol. 12, no. 1, pp. 1818-1820, 1993. https://doi.org/10.1007/BF00539997
[28] A. Dolatkhah, P. Golbabaei, M. K. Besharati Givi, and F. Molaiekiya, “Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing,” Materials & Design, vol. 37, no. 1, pp. 458- 464, 2012. https://doi.org/10.1016/j.matdes.2011.09.035
[29] Dieter, George Ellwood, Mechanical metallurgy, 3rd Ed, New York, McGraw-Hill, , 1994. DOI: 10.4236/jss.2014.25011.
[30] S. Shahraki, S. Khorasani, R. Abdi Behnagh, Y. Fotouhi, and H. Bisadi, “Producing of AA5083/ZrO2 Nanocomposite by Friction Stir Processing (FSP),” Metallurgical and Materials Transactions B, vol. 44, no. 6, pp. 1546-1553, 2013. https://doi.org/10.1007/s11663-013-9914-9
[31] C. Maxwell Rejil, I. Dinaharan, S. J. Vijay, and N. Murugan, “Microstructure and sliding wear behavior of AA6360/(TiC + B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate,” Materials Science and Engineering: A, vol. 552, no. 1, pp. 336–344, 2012. https://doi.org/10.1016/j.msea.2012.05.049
[32] M. Raaft, T. S. Mahmoud, H. M. Zakaria, and T. A. Khalifa, “Microstructural, mechanical and wear behavior of A390/graphite and A390/Al2O3 surface composites fabricated using FSP,” Materials Science and Engineering: A, vol. 528, no. 18, pp. 5741–5746, 2011. https://doi.org/10.1016/j.msea.2011.03.097
[33] M. Raturi, and A. Bhattacharya, “Electrochemical corrosion of AA6061-AA7075 double sided FSW joints prepared with and without secondary heating,” CIRP Journal of Manufacturing Science and Technology, vol. 38, pp. 590-612, 2022. https://doi.org/10.1016/j.cirpj.2022.06.002
[34] D. G. Andrade, C. Leitão, N. Dialami, M. Chiumenti, and D. M. Rodrigues, “Modelling torque and temperature in friction stir welding of aluminium alloys,” International Journal of Mechanical Sciences, vol. 182, pp. 105725, 2020. https://doi.org/10.1016/j.ijmecsci.2020.105725
[35] R. Prasad Mahto, and S. Kanta Pal, “Friction Stir Welding of Dissimilar Materials: An Investigation of Microstructure and Nano-Indentation Study,” Journal of Manufacturing Processes, vol. 55, pp. 103-118, 2020. https://doi.org/10.1016/j.jmapro.2020.03.050
[36] M. Raturi, and A. Bhattacharya, “Temperature variation and influence on local mechanical properties assessed by nanoindentation in AA6061-AA7075 dissimilar FSW,” International Communications in Heat and Mass Transfer, vol. 148, pp. 107079, 2023. https://doi.org/10.1016/j.icheatmasstransfer.2023.107079