پیادهسازی کنترل مقاوم مود لغزشی تطبیقی جهت پایدارسازی خودرو الکتریکی موتور در چرخ در شرایط اضطراری
علوم کاربردی و محاسباتی در مکانیک
مقاله 7 ، دوره 37، شماره 1 - شماره پیاپی 39 ، فروردین 1404، صفحه 107-128 اصل مقاله (1.69 M )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/jacsm.2024.84743.1209
نویسندگان
محمد امین قماشی* ؛ رضا کاظمی
مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران.
چکیده
در این پژوهش با هدف پایدارسازی خودرو الکتریکی موتور در چرخ، نسبت به توسعه یک استراتژی کنترل مقاوم مود لغزان تطبیقی بر اساس صفحه فاز اقدام میگردد. استراتژی کنترل پیشنهادی شامل سه سطح میباشد. سطح اول شامل کنترلر مود لغزشی تطبیقی میباشد. در این پژوهش نسبت به تغییر وضعیت سیستم با هدف برطرف نمودن مشکل پرش در سیستم و به حداقل رساندن پاسخ تاخیر و خطای ردیابی اقدام میگردد. سطح دوم شامل یک الگوریتم کنترل مشترک میباشد که بر اساس مدل مرزی منطقه پایدار صفحه فاز سرعت زاویه لغزشی جانبی خودرو- زاویه لغزش جانبی خودرو پیادهسازی میگردد. زمانیکه خودرو در منطقه پایدار باشد، الگوریتم کنترلر مود لغزشی تطبیقی برای تعیین گشتاور چرخشی خودرو، از سرعت زاویه چرخشی خودرو حول محور یاو استفاده مینماید. و هنگامیکه خودرو خارج از منطقه پایدار قرار داشته باشد، الگوریتم کنترل مود لغزشی تطبیقی از زاویه لغزش جانبی خودرو و سرعت زاویه چرخشی خودرو حول محور یاو جهت پایدارسازی و بازگرداندن خودرو به منطقه پایدار استفاده مینماید. سطح سوم ، شامل یک تابع توزیع بهینه جهت تخصیص گشتاور چرخشی به چهار تایر خودرو میباشد. نتایج حاصل از شبیهسازیهای انجام شده عملکرد مطلوب و اثربخش الگوریتم کنترل پیشنهادی را در پایدارسازی خودرو الکتریکی موتور در چرخ به نمایش میگذارد. همچنین جهت صحهگذاری شبیهسازیهای انجام شده از نرمافزارهای متلب/کارسیم استفاده میگردد. نتایج حاصل از شبیهسازیهای انجام شده، اثربخشی الگوریتم کنترل پیشنهادی را در پایدارسازی خودرو الکتریکی موتور در چرخ به نمایش میگذارد.
کلیدواژهها
مود لغزشی ؛ پایداری ؛ سطح لغزش ؛ موتور در چرخ ؛ دینامیک خودرو
مراجع
[1] P. Hang, X. Chen, “Integrated chassis control algorithm design for path tracking based on four-wheel steering and direct yaw-moment control,” Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering , vol. 233, no. 6, pp. 625–641, 2019. https://doi.org/10.1177/0959651818806075
[2] D. Chindamo, B. Lenzo, M. Gadola, “On the Vehicle Sideslip Angle Estimation: A Literature Review of Methods, Models, and Innovations,” Applied Sciences , vol. 8, no. 3, p. 355, 2018. https://doi.org/10.3390/app8030355
[3] T. Chen, L. Chen, X. Xu, Y. Cai, H. Jiang, X. Sun, “Sideslip Angle Fusion Estimation Method of an Autonomous Electric Vehicle Based on Robust Cubature Kalman Filter with Redundant Measurement Information,” World Electric Vehicle Journal , vol. 10, no. 2, p. 34, 2019. https://doi.org/10.3390/wevj10020034
[4] T. Zhou, “Adaptive sliding control based on a new reaching law,” Control and Decision, vol. 31, no. 8, pp. 1335-1338, 2016. https://doi.org/10.1002/adts.202300736
[5] K. Berntorp, R. Quirynen, T. Uno, et al., “Trajectory tracking for autonomous vehicles on varying road surfaces by friction-adaptive nonlinear model predictive control,” Vehicle System Dynamics , vol. 58, no. 5, pp. 705-725, 2021. https://doi.org/10.1080/00423114.2019.1697456
[6] L. Zhai, R. Hou, T. Sun, and S. Kavuma, “Continuous steering stability control based on an energy-saving torque distribution algorithm for a four in-wheel-motor independent-drive electric vehicle,” Energies , vol. 11, no. 2, p. 350, 2018. https://doi.org/10.3390/en11020350
[7] K. Zhang, Q. Sun, and Y. Shi, “Trajectory tracking control of autonomous ground vehicles using adaptive learning MPC,” IEEE Transactions on Neural Networks and Learning Systems , vol. 32, no. 12, pp. 5554-5564, 2021. https://doi.org/10.1109/TNNLS.2020.3048305
[8] S. Zhang, X. Zhao, G. Zhu, et al., “Adaptive trajectory tracking control strategy of intelligent vehicle,” International Journal of Distributed Sensor Networks , vol. 16, no. 5, pp. 1-14, 2021. https://doi.org/10.1177/1550147720916988
[9] D. Soudbakhsh and A. Eskandarian, “Comparison of linear and nonlinear controllers for active steering of vehicles in evasive manoeuvres,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 226, no. 2, pp. 215-232, 2012. https://doi.org/10.1177/0959651811414503
[10] Q. K. Hou, S. H. Ding, and X. H. Yu, “Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer,” IEEE Transactions on Energy Conversion , vol. 36, no. 4, pp. 2591-2599, 2021. https://doi.org/10.1109/TEC.2020.2985054
[11] J. Zhang, H. Wang, M. Ma, M. Yu, and A. Yazdani, “Active front steering-based electronic stability control for steer-by-wire vehicles via terminal sliding mode and extreme learning machine,” IEEE Transactions on Vehicular Technology , vol. 69, no. 12, pp. 14713-14726, 2020. https://doi.org/10.1109/TVT.2020.3036400
[12] K. Mei, S. Ding, and W. X. Zheng, “Fuzzy adaptive SOSM based control of a type of nonlinear systems,” IEEE Transactions on Circuits and Systems II: Express Briefs , vol. 69, no. 3, pp. 1342-1346, 2022. https://doi.org/10.1109/TCSII.2021.3116812
[13] M. Rahman, M. Masrur, and M. N. Uddin, “Impacts of interior permanent magnet machine technology for electric vehicles,” In Proceedings of the 2012 IEEE International Electric Vehicle Conference , 2012, pp. 1-5. https://doi.org/10.1109/IEVC.2012.6183226
[14] M. A. Ghomashi and R. Kazemi, “Motion trajectory control and robust control based on nonlinear bicycle model to stabilization for in-wheel motor electric vehicle in emergency scenario,” Journal of Aerospace Mechanics, vol. 20, no. 1, pp. 109-124, 2024. https://dor.isc.ac/dor/20.1001.1.26455323.1403.20.1.7.9
[15] K. Hartani, A. Merah, and A. Draou, “Stability enhancement of four-in-wheel motor-driven electric vehicles using an electric differential system,” Journal of Power Electronics , vol. 15, no. 5, pp. 1244-1255, 2015. https://doi.org/10.6113/JPE.2015.15.5.1244
[16] M. Sekour, K. Hartani, and A. Merah, “Electric vehicle longitudinal stability control based on a new multi machine nonlinear model predictive direct torque control,” Journal of Advanced Transportation, vol. 2017, no.1, p. 4125384, 2017. https://doi.org/10.1155/2017/4125384
[17] E. Mousavinejad, Q.-L. Han, F. Yang, Y. Zhu, and L. Vlacic, “Integrated control of ground vehicles dynamics via advanced terminal sliding mode control,” Vehicle System Dynamics , vol. 55, no. 2, pp. 268-294, 2019. https://doi.org/10.1080/00423114.2016.1256489
[18] T. Ahmed, K. Hartani, and A. Allali, “New DTC strategy of multi machines single-inverter systems for electric vehicle traction applications,” International Journal of Power Electronics and Drive Systems , vol. 11, no. 2, pp. 641-650, 2020. http://doi.org/10.11591/ijpeds.v11.i2.pp641-650
[19] A. Cabrera, S. Gowal, and A. Martinoli, “A new collision warning system for lead vehicles in rear-end collisions,” IEEE Intelligent Vehicles Symposium (IV), 2014, pp. 1-6. https://doi.org/10.1109/IVS.2012.6232244
[20] H. K. Lee, S. G. Shin, and D. S. Kwon, “Design of emergency braking algorithm for pedestrian protection based on multi-sensor fusion,” International Journal of Automotive Technology, vol. 18, no. 6, pp. 1067-1076, 2017. https://doi.org/10.1007/s12239-017-0104-7
[21] M. A. Ghomashi, R. Kazemi, "Motion path following coordinated control for in-wheel motor electric vehicle via implementation robust control and optimal control," Journal of Modeling in Engineering, pp. 1-15, 2024. https://doi.org/10.22075/jme.2024.31752.2531
[22] A. Lopez, R. Sherony, S. Chien, L. Li, Y. Qiang, and Y. Chen, "Analysis of the braking behaviour in pedestrian automatic emergency braking," IEEE 18th International Conference on Intelligent Transportation Systems (ITSC) , 2015, pp. 1-6. https://doi.org/10.1109/ITSC.2015.185
[23] X. Wang, M. Zhu, M. Chen, and P. Tremont, "Drivers’ rear end collision avoidance behaviors under different levels of situational urgency," Transportation Research Part C: Emerging Technologies , vol. 71, pp. 419-433, 2017. https://doi.org/10.1016/j.trc.2016.08.014
[24] N. Guo, X. Zhang, Y. Zou, B. Lenzo, T. Zhang, and D. Göhlich, “A fast model predictive control allocation of distributed drive electric vehicles for tire slip energy saving with stability constraints,” Control Engineering Practice , vol. 102, no. 1, p. 104554, 2020. https://doi.org/10.1016/j.conengprac.2020.104554
[25] C. Hu, R. Wang, F. Yan, and M. Chadli, “Composite nonlinear feedback control for path following of four-wheel independently actuated autonomous ground vehicles,” IEEE Transactions on Intelligent Transportation Systems , vol. 17, no. 7, pp. 2063–2074, 2021. https://doi.org/10.1109/TITS.2015.2498172
[26] A. V. Mernone and J. N. Mazumdar, “A Mathematical Study of Peristaltic Transport of a Casson Fluid,” Mathematical and Computer Modelling , vol. 35, no. 7–8, pp. 895-912, 2014. https://doi.org/10.1016/S0895-7177(02)00058-4
[27] M. A. Ghomashi and R. Kazemi, “Implementation robust control technique to lateral stabilization for in-wheel motor electric vehicle,” Journal of Solid and Fluid Mechanics (JSFM) , vol. 14, no. 2, pp. 111-126, 2024. https://doi.org/10.22044/jsfm.2024.13967.3821
[28] Q. Xia, L. Chen, X. Xu, et al., “Coordination control method of autonomous ground electric vehicle for simultaneous trajectory tracking and yaw stability control,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 237, no. 5, pp. 941-957, 2022.
[29] C. Hu, R. Wang, F. Yan, et al., “Output constraint control on path following of four-wheel independently actuated autonomous ground vehicles,” IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4033–4043, 2017. https://doi.org/10.1177/09544070221087485
[30] J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes, “Collision avoidance and stabilization for autonomous vehicles in emergency scenarios,” IEEE Transactions on Control Systems Technology, vol. 25, no. 4, pp. 1204–1216, 2016. https://doi.org/10.1109/TCST.2016.2599783
[31] H. Li, P. Li, L. Yang, et al., “Safety research on stabilization of autonomous vehicles based on improved-LQR control,” AIP Advances , vol. 12, no. 1, p. 015313, 2022. https://doi.org/10.1063/5.0078950
[32] Pacejka, H. Tire and Vehicle Dynamics; Elsevier: Amsterdam, Netherlands, 2005.
[33] Y. Liang, Y. Li, A. Khajepour, et al., “Holistic adaptive multi-model predictive control for the path following of 4WID autonomous vehicles,” IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 69–81, 2020. https://doi.org/10.1109/TVT.2020.3046052
[34] S. Ding, L. Liu, and W. X. Zheng, “Sliding mode direct yaw moment control design for in-wheel electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6752–6762, 2020. https://doi.org/10.1109/TIE.2017.2682024
[35] C. Fu, R. Hoseinnezhad, A. Bab-Hadiashar, et al., “Direct yaw moment control for electric and hybrid vehicles with independent motors,” International Journal of Vehicle Design, vol. 69, no. 1–4, pp. 1–24, 2021. https://doi.org/10.1504/IJVD.2015.073111
آمار
تعداد مشاهده مقاله: 582
تعداد دریافت فایل اصل مقاله: 275