| 
		1- Bao, S., Hua, C., Shen, L., & Yu, H. (2020). New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology , 62 (1), 118-131. https://doi.org/10.1111/jipb.128922- Brunner, A.M., Rottmann, W.H., Sheppard, L.A., Krutovskii, K., DiFazio, S.P., Leonardi, S.L., & Straus, S.H. (2000). Structure and expression of duplicate AGAMOUS orthologues in poplar. Plant Molecular Biology , 44 , 619–634. https://link.springer.com/article/10.1023/A:1026550205851 .
3- Chen, M.K., Lin, I.C., & Yang, C.H. (2008). Functional analysis of three lily(Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant and Cell Physiology , 49 (5), 704-717. https://doi.org/10.1093/pcp/pcn0464- Chuck, G., Meeley, R., & Hake, S. (2008). Floral meristem initiation and meristem cell fate are regulated by the maizeAP2 genesids1 andsid1. Development , 135 (18), 3013-3019. https://doi.org/10.1242/dev.0242735- Deng, W., Ying, H., Helliwell, C. A., Taylor, J.M., Peacock, W.J., & Dennis, E.S. (2011). FLOWERING LOCUS C (FLC)  regulates development pathways throughout the life cycle of Arabidopsis . Proceedings of the National Academy of Sciences of the USA , 108 , 6680–6685.https://doi.org/10.1073/pnas.11031751086- Ding, L., Wang, Y., & Yu, H. (2013). Overexpression ofDOSOC1, anortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium chao parya smile. Plant Cell Physiology , 54 , 595–608. https://doi.org/10.1093/pcp/pct026 .
7- Fornara, F., Parenicova, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M.M., Colombo, L., & Kater, M.M. (2004). Functional characterization ofOsMADS18, a member of theAP1/SQUA subfamily of MADS box genes. Plant Physiology , 135 (4), 2207-2219. https://doi.org/10.1104/pp.104.045039 .
8-Gocal, G.F., King, R.W., Blundell, C.A., Schwartz, O.M., Andersen, C.H., & Weigel, D. (2001) Evolution of floral meristem identity genes: Analysis ofLolium temulentum genes related to APETALA1 andLEAFY of arabidopsis. Plant Physiology , 125 , 1788–1801. https://doi.org/10.1104/pp.125.4.1788 .
9-Ghaemizadeh, F., Dashti, F.A.R.S.H.A.D., & Shafeinia, A.R. (2018). Expression analysis of gaLFY  and AsFT  during reproductive development in different organs of some Iranian garlic (Allium sativum  L.) clones. Iranian Journal of Horticultural Science , 49 (1), 269-278. (In Persian with English abstract). https://www.cabidigitallibrary.org/doi/full/10.5555/2020307494310-Ghaemizadeh, F., Dashti, F., & Shafeinia, A. (2019). Expression pattern of ABCDE model genes in floral organs of bolting garlic clone. Gene Expression Patterns , 34 , 119059. https://doi.org/10.1016/j.gep.2019.119059 .
11-Ghaemizadeh, F., Dashti, F., & Mosavi, A. (2024). Expression pattern and structural analysis of AGAMOUS -LIKE  6 (AGL6 ) in Iranian garlic clones (Allium sativum  L.). Agricultural Biotechnology Journal , 16 (1), 155-174. (in Persian with English abstract). https://www.sid.ir/fileserver/jf/961-279249-fa-1129535.pdf12-Greenup, A.G., Sasani, S., Oliver, S.N., Talbot, M.J., Dennis, E.S., Hemming, M.N., & Trevaskis, B. (2010). ODDSOC2  is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiology , 153 (3), 1062-1073. https://doi.org/10.1104/pp.109.152488 .
13-Hepworth, S.R. Valverde, F., Ravenscroft, D., Mouradov, A., & Coupland, G. (2002) Antagonistic regulation of flowering‐time gene SOC1  by CONSTANS  and FLC  via separate promoter motifs. The European Molecular Biology Organization Journal , 21 (16), 4327-4337. https://doi.org/10.1093/emboj/cdf43214-Helliwell, C.A., Wood, C.C., Robertson, M., James Peacock, W., & Dennis, E.S. (2006). The arabidopsis FLC  protein interacts directly in vivo  with SOC1  and FT  chromatin and is part of a high‐molecular‐weight protein complex. The Plant Journal , 46 (2), 183-192. https://doi.org/10.1111/j.1365-313X.2006.02686.x15-Hantari, D., Purnomo, D., & Triharyanto, E. (2020). The effects of fertilizer composition and gibberellin on flowering and true shallot seed formation of three shallot varieties at the highlands. Conference Series: Earth and Environmental Science , 423 (1), 012032. https://doi.org/10.1088/1755-1315/423/1/012032 .
16-Irish, V.F., & Litt, A.T. (2005). Flower development and evolution: Gene duplication, diversification and redeployment. Current Opinion in Genetics and Development , 15 (4), 454-460. https://doi.org/10.1016/j.gde.2005.06.001 .
17-Kamenetsky, R., Faigenboim, A., Mayer, E.S., Michael, T.B., Gershberg, C., Kimhi, S., & Sherman, A. (2015). Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic (Allium sativum  L.). Biomed Centeral Genomics , 16 (1), 12. https://doi.org/10.1186/s12864-015-1212-2 .
20-Lee, R., Baldwin, S., Kenel, F., McCallum, J., & Macknight, R. (2013). FLOWERING LOCUS T  genes control onion bulb formation and flowering. Nature Communications , 4 (1), 1-9. https://www.nature.com/articles/ncomms3884 .
21-Pan, R., Xu, L., Wei, Q., Wu, C., Tang, W., Oelmüller, R., & Zhang, W. (2017). Piriformospora indica promotes early flowering in Arabidopsis  through regulation of the photoperiod and gibberellin pathways. Plos One , 12 (12), e0189791. https://doi.org/10.1371/journal.pone.0189791 .
22-Liu, X.R., Pan, T., Liang, W.Q., Gao, L., Wang, X.J., Li, H.Q., & Liang, S. (2016) Overexpression of an orchid(Dendrobium nobile) SOC1/TM3-Like ortholog, DnAGL19, in Arabidopsis  regulatesHOS1-FT expression. Frontiers in Plant Science , 7 (99), 1-12. https://doi.org/10.3389/fpls.2016.00099 .
23-Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using Real-Time quantitative PCR and the 2− ΔΔCT methods. Methods , 25 , 402-408. https://doi.org/10.1006/meth.2001.1262 .
24-Murai, K., Miyamae, M., Kato, H., Takumi, S., & Ogihara, Y. (2003). WAP1, a wheatAPETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant and Cell Physiology , 44 (12), 1255-1265. https://doi.org/10.1093/pcp/pcg171 .
25-Medard, N.G., & Yanofsky, M.F. (2001). Function and evolution of the plant MADS-box gene family. Nature Reviews Genetics, 2 (3), 186-195. https://doi.org/10.1038/35056041 .
26-Nakamura, T., Song, I., Fukuda, T., Yokoyama, J., Maki, M., & Ochiai, T. (2005) Characterization ofTrcMADS1 gene ofTrillium camtschatcense (Trilliaceae) reveals functional evolution of theSOC1/TM3-like gene family. Journal of Plant Research , 118 , 229–234. https://link.springer.com/article/10.1007/s10265-005-0215-5 .
27-Ohto, M.A., Fischer, R.L., Goldberg, R.B., Nakamura, K., & Harada, J.J. (2005). Control of seed mass byAPETALA2. Proceedings of the National Academy of Sciences , 102 , 3123–3128. https://doi.org/10.1073/pnas.04098581028-Papaefthimiou, D., Kapazoglou, A., & Tsaftaris, A.S. (2012). Cloning and characterization ofSOC1 homologs in barley(Hordeum vulgare) and their expression during seed development and in response to vernalization. Physiologia Plantarum , 146 (1), 71-85. https://doi.org/10.1111/j.1399-3054.2012.01610.x29-Pfaffl, M.W., Horgan, G.W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research , 30 (9), 36-36. https://doi.org/10.1093/nar/30.9.e36 .
30-Rotem, N., Einat, Sh., Yuval, P., Fouad, A., Orit, E., Haim. D., Rabinowitch, I., & Rina, K. (2007). Reproductive development and phenotypic differences ingarlic are associated with expression and splicing of LEAFY  homologue gaLFY. Journal of Experimental Botany, 58 (5), 1133–1141. https://doi.org/10.1093/jxb/erl272 .
32-Ruelens, P., De Maagd, R.A., Proost, S., Theißen, G., Geuten, K., & Kaufmann, K. (2013). FLOWERING LOCUS C  in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nature Communications , 4 (1), 2280. https://doi.org/10.1038/ncomms328033-Ryu, C.H., Lee, S., Cho, L.H., Kim, S.L., Lee, Y.S., & Choi, S.C. (2009). OsMADS50 andOsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environment , 32,  1412–1427. https://doi.org/10.1111/j.1365-3040.2009.02008.x34- Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Kröber, S., & Coupland, G. (2006). The transcription factor FLC  confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes & Development , 20 (7), 898-912. https://doi.org/10.1101/gad.373506 37-Sharma, N., Ruelens, P., D'hauw, M., Maggen, T., Dochy, N., Torfs, S., & Geuten, K. (2017). A flowering locus C homolog is a vernalization-regulated repressor in Brachypodium and is cold regulated in wheat. Plant Physiology , 173 (2), 1301-1315. https://doi.org/10.1104/pp.16.0116138- Sharma, N., Geuten, K., Giri, B.S., & Varma, A. (2020). The molecular mechanism of vernalization in Arabidopsis  and cereals: Role of Flowering Locus C  and its homologs. Physiologia Plantarum , 170 (3), 373-383. https://doi.org/10.1111/ppl.1316339- Schilling, S., Kennedy, A., Pan, S., Jermiin, L.S., & Melzer, R. (2020). Genome‐wide analysis of MIKC‐type MADS‐box genes in wheat: Pervasive duplications, functional conservation and putative neo functionalization. New Phycologist Foundation , 225 (1), 511-529. https://doi.org/10.1111/nph.1612242- Winfield, M.O., Lu, C., Wilson, I.D., Coghill, J.A., & Edwards, K. (2009). Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth. BMC Plant Biol ogy, 9 , 55. https://doi.org/10.1186/1471-2229-9-5543- Yant, L., Mathieu, J., Dinh, T.T., Ott, F., Lanz, C., Wollmann, H., Chen, X., & Schmid, M. (2010). Orchestration of the floral transition and floral development in Arabidopsis  by the bifunctional transcription factorAPETALA2 . The Plant Cell , 22 (7), 2156-2170. https://doi.org/10.1105/tpc.110.075606 .
44- Yalovsky, S., Rodríguez-Concepción, M., Bracha, K., Toledo-Ortiz, G., & Gruissem, W. (2000). Prenylation of the floral transcription factorAPETALA1 modulates its function. The Plant Cell ,12 (8), 1257-1266. https://doi.org/10.1105/tpc.12.8.125745-Yu, H., & Goh, C.J. (2000). Identification and characterization of three orchid MADS-box genes of the AP1/AGL9  subfamily during floral transition. Plant Physiology , 123 , 1325–1336. https://doi.org/10.1104/pp.123.4.132546-Yan, X., Wang, L.J., Zhao, Y.Q., & Jia, G.X. (2022). Expression patterns of key genes in the photoperiod and vernalization flowering pathways in Lilium longiflorum  with different bulb sizes. International Journal of Molecular Sciences , 23 (15), 8341. https://doi.org/10.3390/ijms2315834147-Yant, L., Mathieu, J., Dinh, T.T., Ott, F., Lanz, C., Wollmann, H., Chen, X., & Schmid, M. (2010). Orchestration of the floral transition and floral development in Arabidopsis  by the functional transcription factorAPETALA2 . The Plant Cell , 22 (7), 2156-2170. https://doi.org/10.1105/tpc.110.075606 .
48-Yoo, S.K., Chung, K.S., Kim, J., Lee, J.H., Hong, S.M., Yoo, S.J., & Ahn, J.H. (2005) CONSTANTS activatesSUPPRESSORS of OCEREXPRESSION of CONSTANS 1 throughFLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiology , 139 (2), 770-778. https://doi.org/10.1104/pp.105.066928  |