- Aggarwal, P., Choudhary, K.K., Singh, A.K., & Chakraborty, D. (2006). Variation in soil strength and rooting characteristics of wheat in relation to soil management. Geoderma, 136(1-2), 353-363. https://doi.org/ 10.1016/j.geoderma.2006.04.004
- Ahmad, M., Lee, S.S., Lee, S.E., Al-Wabel, M.I., Tsang, D.C., & Ok, Y.S. (2017). Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of Soils, 17, 717-730. https://doi.org/10.1007/s11368-015-1339-4
- Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., & Ok, Y.S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071
- Ahmad, M., Usman, A.R., Al-Faraj, A.S., Ahmad, M., Sallam, A., & Al-Wabel, M.I. (2018). Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays) plants. Chemosphere, 194, 327-339. https://doi.org/10.1016/j.chemosphere.2017.11.156
- Akhil, D., Lakshmi, D., Kartik, A., Vo, D.V.N., Arun, J., & Gopinath, K.P. (2021). Production, characterization, activation and environmental applications of engineered biochar: a review. Environmental Chemistry Letters, 19, 2261-2297. https://doi.org/10.1007/s10311-020-01167-7
- Bandara, T., Franks, A., Xu, J., Bolan, N., Wang, H., & Tang, C. (2020). Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils. Critical Reviews in Environmental Science and Technology, 50(9), 903-978. https://doi.org/10.1080/10643389.2019.1642832
- Biria, M., Moezzi, A., & AmeriKhah, H. (2017). Effect of Sugercan bagasse, s biochar on maize plant growth, grown in lead and cadmium contaminated soil, Water & Soil, 31(2), 609-626. (In Persian with English abstract). https://doi.org/10.22067/JSW.V31I2.55832
- Boostani, H.R., Hardie, A.G., Najafi-Ghiri, M., & Zare, M. (2022). Chemical speciation and release kinetics of Ni in a Ni-contaminated calcareous soil as affected by organic waste biochars and soil moisture regime. Environmental Geochemistry and Health, 1-15. https://doi.org/10.1007/s10653-022-01289-7
- Bousdra, T., Papadimou, S.G., & Golia, E.E. (2023). The use of biochar in the remediation of Pb, Cd, and Cu-contaminated soils. The Impact of biochar feedstock and preparation conditions on its remediation capacity. Land, 12(2), 383. https://doi.org/10.3390/land12020383
- Bremner, J.M., & Mulvaney, C. (1982). Nitrogen—total. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 595-624. https://doi.org/10.2134/agronmonogr9.2.2ed.c31
- Brendova, K., Zemanová, V., Pavlíková, D., & Tlustoš, P. (2016). Utilization of biochar and activated carbon to reduce Cd, Pb and Zn phytoavailability and phytotoxicity for plants. Journal of Environmental Management, 181, 637-645. https://doi.org/10.3390/land12020383
- Cassel, D., & Nielsen, D. (1986). Field capacity and available water capacity. Methods of soil analysis: Part 1 Physical mineralogical methods, 5, 901-926. https://doi.org/10.2136/sssabookser5.1.2ed.c36
- Cha, J. S., Park, S.H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15. https://doi.org/10.1016/ j.jiec.2016.06.002
- Daffalla, S. (2023). Adsorption of chromium (VI) from aqueous solution using palm leaf-derived biochar: kinetic and isothermal studies. Separations, 10(4), 260. https://doi.org/10.3390/separations10040260
- Demirbas, A., & Arin, G. (2002). An overview of biomass pyrolysis. Energy Sources, 24(5), 471-482. https://doi.org/10.1080/00908310252889979
- Ehyaei, M., & Behbahanizade, A. (1993). Methods of soil chemical analysis. Soil & Water Research Institute, Technical Bulletin. (893). (In Persian)
- Gee, G.W., & Bauder, J.W. (1986). Particle‐size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 383-411. https://doi.org/10.2136/sssabookser5.1.2ed.c15
- Gusiatin, Z.M., Kurkowski, R., Brym, S., & Wiśniewski, D. (2016). Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil. Environmental Science & Pollution Research, 23, 21249-21261. https://doi.org/10.1007/s11356-016-7335-4
- Han, Y., Yin, Y., Zhang, H., Sun, S., Huang, Z., Deng, Y., & Bao, L. (2024). Adsorption effect of phosphate modified grape branch biochar on Cd2. Journal of Geoscience and Environment Protection, 12(4), 59-77. https://doi.org/ 10.4236/gep.2024.124005
- He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P.C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846-855. https://doi.org/10.1016/j.envpol.2019.05.151
- Hejazizadeh, A., Gholamalizadeh Ahangar, A., & Ghorbani, M. (2016). Effect of biochar on lead and cadmium uptake from applied paper factory sewage sludge by sunflower (Heliantus annus). Water & Soil Science, 26(1-2), 259-271. (In Persian with English abstract)
- Helmke, P.A., & Sparks, D.L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of soil analysis: Part 3 chemical methods, 5, 551-574. https://doi.org/10.2136/sssabookser5.3.c19
- Ibrahim, M., Khan, S., Hao, X., & Li, G. (2016). Biochar effects on metal bioaccumulation and arsenic speciation in alfalfa (Medicago sativa) grown in contaminated soil. International Journal of Environmental Science & Technology, 13, 2467-2474. https://doi.org/10.1007/s13762-016-1081-5
- Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., & Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406-433. https://doi.org/10.1080/10643382015.1096880
- ISO 11466. (1995), Soil quality, Extraction of Trace Elements Soluble in Aqua Regia. International Organization for Standardization. Genf, Schweiz.
- Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., Sedláček, P., Bielská, L., & Soja, G. (2021). Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 4, 36-46. https://doi.org/10.1016/j.crcon.2021.01.003
- Jeffery, S., Verheijen, F.G., van der Velde, M., & Bastos, A.C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144(1), 175-187. https://doi.org/10.1016/j.agee.2011.08.015
- Jing, Y.-D., He, Z.-L., & Yang, X.-E. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science B, 8(3), 192-207. https://doi.org/10.1631/jzus. 2007.B0192
- Kastori, R., Plesničar, M., Sakač, Z., Panković, D., & Arsenijević‐Maksimović, I. (1998). Effect of excess lead on sunflower growth and photosynthesis. Journal of Plant Nutrition, 21(1), 75-85. https://doi.org/10.1080/019041698 09365384
- Kloss, S., Zehetner, F., Buecker, J., Oburger, E., Wenzel, W.W., Enders, A., Lehmann, J., & Soja, G. (2015). Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars. Environmental Science & Pollution Research, 22, 4513-4526. https://doi.org/10.1007/s11356-014-3685-y
- Kołodyńska, D., Krukowska, J., & Thomas, P. (2017). Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chemical Engineering Journal, 307, 353-363. https://doi.org/ 10.1016/j.cej.2016.08.088
- Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology & Biochemistry, 43(9), 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022
- Liang, J., Yang, Z., Tang, L., Zeng, G., Yu, M., Li, X., Wu, H., Qian, Y., Li, X., & Luo, Y. (2017). Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere, 181, 281-288. https://doi.org/10.1016/j.chemosphere.2017.04.081
- Liang, M., Lu, L., He, H., Li, J., Zhu, Z., & Zhu, Y. (2021). Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review. Sustainability, 13(24), 14041. https://doi.org/10.3390/su132414041
- Lindsay, W.L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
- Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., Bolan, N., Pei, J., & Wang, H. (2014). Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems & Environmental Pollution, 191, 124-132. https://doi.org/10.1016/j.agee.2014.04.010
- MalehMir Chegini, M., Golchin, A., Khadem Moghadam Igdelou, N., & Moraveij, K. (2020 a). The effect of Pyrolysis temperature and type of organic residues on physicochemical properties of produced biochar. Iranian Journal of Soil & Water Research, 51(3), 575-593. (In Persian with English abstract). https://org/10.22059/ IJSWR.2019.289906.668332
- MalehMir Chegini, M., Golchin, A., Khadem Moghadam Igdelou, N., & Moraveij, K. (2020 b). Comparison of the effect of Pyrolysis temperatures and activating materials on properties of modified biochar. Iranian Journal of Soil & Water Research, 51(9), 2405-2415. (In Persian with English abstract). https://doi.org/10.22059/IJSWR. 2020.291647.668376
- Moreno-Jiménez, E., Fernández, J.M., Puschenreiter, M., Williams, P.N., & Plaza, C. (2016). Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: Impact of biochar, organic and mineral fertilizers. Agriculture, Ecosystems & Environmental Pollution, 219, 171-178. https://doi.org/10.1016/j.agee .2015.12.001
- Nelson, D.W., & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods, (Vol. 5).
- Olsen, S.R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
- Page, A.L. (1982). Methods of soil analysis. Part 2. Chemical and microbiological properties.
- Park, J. H., Choppala, G.K., Bolan, N.S., Chung, J.W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, 439-451. https://doi.org/10.1007/s11104-011-0948-y
- Peng, H., Gao, P., Chu, G., Pan, B., Peng, J., & Xing, B. (2017). Enhanced adsorption of Cu (II) and Cd (II) by phosphoric acid-modified biochars. Environmental Pollution, 229, 846-853. https://doi.org/10.1016/ j.envpol.2017.07.004
- Rashid, A., Schutte, B.J., Ulery, A., Deyholos, M.K., Sanogo, S., Lehnhoff, E.A., & Beck, L. (2023). Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy, 13(6), 1521. https://doi.org/10.3390/agronomy13061521
- Rhoades, J. (1996). Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical methods, 5, 417-435. https://doi.org/10.2136/sssabookser5.3.c14
- Sajjadi, B., Zubatiuk, T., Leszczynska, D., Leszczynski, J., & Chen, W.Y. (2019). Chemical activation of biochar for energy and environmental applications: a comprehensive review. Reviews in Chemical Engineering, 35(7), 777-815. https://doi.org/10.1515/revce-2018-0003
- Sastre, J., Sahuquillo, A., Vidal, M., & Rauret, G. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462(1), 59-72. https://doi.org/10.1016/S0003-2670(02)00307-0
- Shao, M., Ding, Z.C., Yang, Y.Z., Zhang, Z.P., & Wan, Y.S. (2024). Phosphoric acid-modified biochar enhances electrokinetic in situ leaching technology to remediate Pb2+ contaminated soil. International Journal of Environmental Science and Technology, 1-12. https://doi.org/10.1007/s13762-024-05568-x
- Sinha, P., Dube, B., Srivastava, P., & Chatterjee, C. (2006). Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere, 65(4), 651-656. https://doi.org/10.1016/j.chemosphere. 2006.01.068
- Soudek, P., Valseca, I.R., Petrová, Š., Song, J., & Vaněk, T. (2017). Characteristics of different types of biochar and effects on the toxicity of heavy metals to germinating sorghum seeds. Journal of Geochemical Exploration, 182, 157-165. https://doi.org/10.1016/j.gexplo.2016.12.013
- Tang, L., Yu, J., Pang, Y., Zeng, G., Deng, Y., Wang, J., & Feng, H. (2018). Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 336, 160-169. https://doi.org/10.1016/j.cej.2017.11.048
- Thomas, G.W. (1996). Soil pH and soil acidity. Methods of soil analysis: Part 3 Chemical methods, 5, 475-490. https://doi.org/10.2136/sssabookser5.3.c16
- Timofeev, I., Kosheleva, N., & Kasimov, N. (2018). Contamination of soils by potentially toxic elements in the impact zone of tungsten molybdenum ore mine in the Baikal region: A survey and risk assessment. Science of the Total Environment, 642, 63-76. https://doi.org/10.1016/j.scitotenv.2018.06.042
- Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215. https://doi.org/10.1007/s11157-020-09523-3
- Wang, B., Gao, B., & Fang, J. (2017). Recent advances in engineered biochar productions and applications. Critical Reviews in Environmental Science and Technology, 47(22), 2158-2207. https://doi.org/10.1080/10643389.2017. 1418580
- Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002-1022. .https://doi.org/10.1016/j.jclepro.2019.04.282
- Xu, P., Sun, C.-X., Ye, X.-Z., Xiao, W.-D., Zhang, Q., & Wang, Q. (2016). The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology & Environmental Safety, 132, 94-100. https://doi.org/10.1016/j.ecoenv.2016.05.031
- Yaashikaa, P.R., Kumar, PS., Varjani, S., & Saravanan, A.J.B.R. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570
- Yang, X., Zhang, S., Ju, M., & Liu, L. (2019). Preparation and modification of biochar materials and their application in soil remediation. Applied Sciences, 9(7), 1365. https://doi.org/10.3390/app9071365
- Zeng, X.Y., Wang, Y., Li, R.X., Cao, H.L., Li, Y.F., & Lü, J. (2022). Impacts of temperatures and phosphoric-acid modification to the physicochemical properties of biochar for excellent sulfadiazine adsorption. Biochar, 4(1), 14. https://doi.org/10.1007/s42773-022-00143-4
- Zhang, G., Guo, X., Zhao, Z., He, Q., Wang, S., Zhu, Y., Yan, Y., Liu, X., Sun, K., & Zhao, Y. (2016). Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environmental Pollution. 218, https://doi.org/10.1016/j.envpol.2016.07.031
- Zhang, X., Gu, P., Liu, X., Huang, X., Wang, J., Zhang, S., & Ji, J. (2021). Effect of crop straw biochars on the remediation of Cd-contaminated farmland soil by hyperaccumulator Bidens pilosa Ecotoxicology and Environmental Safety, 219, 112332. https://doi.org/10.1016/j.ecoenv.2021.112332
- Zhang, X., Zhao, B., Liu, H., Zhao, Y., & Li, L. (2022). Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environmental Technology & Innovation, 26, 102288. https://doi.org/10.1016/j.eti.2022.102288
|