1-Koob TJ, Lim JJ, Massee M, Zabek N, Rennert R., Gurtner G, Li WW. Angiogenic properties of dehydrated human amnion/chorion allografts: Therapeutic potential for soft tissue repair and regeneration. Vasc. Cell. 2014; 1:6:10. Doi:10.1186/2045-824X-6-10.
2-Mao Y, John N, Protzman NM, Kuehn A, Long D, Sivalenka R, Junka RA, Gosiewska A, Hariri RJ, Brigido SA. A decellularized flowable placental connective tissue matrix supports the cellular functions of human tenocytes in vitro. J. Exp. Orthop. 2022; 9: 69. Doi:10.1186/s40634-022-00509-4.
3-Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur. Cell Mater. 2008; 15, 88–99. Doi: 10.22203/ecm.v015a07.
4-Mamede KM, Sant’anna LB. Antifibrotic effects of total or partial application of amniotic membrane in hepatic fibrosis. An.Acad. Bras. Cienc. 2019; 91(3): e20190220. Doi: 10.1590/0001-3765201920190220.
5-Gleason J, Guo X, Protzman NM, Mao Y, Kuehn A, Sivalenka R, Gosiewska A, Hariri R, Brigido SA. Decellularized and dehydrated human amniotic membrane in wound management: Modulation of macrophage differentiation and activation. J. Biotechnol. Biomater. 2022; 12:(8) 1000288. Doi:10.4172/2155-952X.1000289.
6-Warning JC, McCracken SA, Morris JM. A balancing act: Mechanisms by which the fetus avoids rejection by the maternal immune system. Reproduction 2011;141(6):715-724. Doi:10.1530/REP-10-0360.
7-Fénelon M, Catros S, Meyer C, Fricain JC, Obert L, Auber F, Louvrier A, Gindraux F. Applications of human amniotic membrane for tissue engineering. Membranes 2021; 11(6): 387. Doi:10.3390/membranes11060387.
8-Elkhenany H, El-Derby A, Abd Elkodous M, Salah R.A, Lotfy A, El-Badri N. Applications of the amniotic membrane in tissue engineering and regeneration: The hundred-year challenge. Stem Cell Res. Ther. 2022; 10;13(1):8. Doi:10.1186/s13287-021-02684-0.
9-Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N. Neurotrophic function of conditioned medium from human amniotic epithelial cells. J. Neurosci. Res. 2000; 15:62(4):585-590. Doi:10.1002/1097-4547(20001115)62:4<585::AID-JNR13>3.0.CO;2-U.
10-Moorefield EC, McKee E.E, Solchaga L, Orlando G, Yoo JJ, Walker S, Furth M.E, Bishop C.E. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS ONE 2011; 6 (10): e26535. Doi:10.1371/journal.pone.0026535.
11-Grzywocz Z, Pius-Sadowska E, Klos P, Gryzik M, Wasilewska D, Aleksandrowicz B, Dworczynska M, Sabalinska S, Hoser G, Machalinski B, et al. Growth factors and their receptors derived from human amniotic cells in vitro. Folia Histochem. Cytobiol. 2014; 52(3):163-170. Doi:10.5603/FHC.2014.0019.
12-Roy A, Mantay M, Brannan C, Griffiths S. Placental tissues as biomaterials in regenerative medicine. Biomed. Res. Int. 2022; 2022: 6751456. Doi:10.1155/2022/6751456.
13-Bhatia M, Pereira M, Rana H, Stout B, Lewis C, Abramson S, Labazzo K, Ray C, Liu Q, Hofgartner W, et al. The mechanism of cell interaction and response on decellularized human amniotic membrane: Implications in wound healing. Wounds 2007; 19(8):207-217.
14-Meyer FA, Laver-Rudich Z, Tanenbaum R. Evidence for mechanical coupling of glycoprotein microfibrils with collagen fibrils in Wharton’s jelly. Biochim. Biophys. Acta 1983; 22;755(3):376-387. Doi:10.1016/0304-4165(83)90241-6.
15-Cheng HY. The impact of mesenchymal stem cell source on proliferation, differentiation, immunomodulation, and therapeutic efficacy. J. Stem Cell Res. Therapy 2014; 4:(10) 1–8. Doi:10.4172/2157-7633.1000237.
16-Hopkinson A, McIntosh RS, Tighe PJ, James DK, Dua HS. Amniotic membrane for ocular surface reconstruction: Donor variations and the effect of handling on TGF-beta content. Investig. Ophthalmol. Vis. Sci. 2006; 47(10):4316-4322. Doi:10.1167/iovs.05-1415.
17-Luna LG. Histopathologic methods and color atlas of special stains and tissue artifacts. Maryland: American Histolabs, Inc.1992
18-Moore DM, Reynold, R C. X-ray diffraction and the identification and analysis of clay minerals. 2nd Ed. Oxford University Press, New York. 1997; 135(6): 819-842.
19-Mahmood SK, Zakaria MZ, Yusof LM, Hammadi N I. Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair. Biochem. Biophy. Rep.2017; 23:10:237-251. Doi: 10.1016/j.bbrep.2017.04.008.
20-Harley BA, Kim HD, Zaman MH, Yannas IV, Gibson L J. Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophysical journal. 2008; 95(8): 4013-4024.Doi: 10.1529/biophysj.107.122598.
21-AL-Ameri SHA, Al-Timmemi HAK. The Effectiveness of Extracellular Matrix Derived from Bovine Urinary Bladder Matrix on Spinal Cord Injury in Dog. IJONS 2018; 9(50): 976 – 97.
22-Bruzauskaite I, Bironaite D, Bagdonas E, Bernotiene E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology.2016; 68(3): 355-369. Doi:10.1007/s10616-015-9895-4.
23-Hausner T, Schmidhammer R, Zandieh S, Hopf R, Redl H. Nerve regeneration using tubular scaffolds from biodegradable polyurethane. Acta Neurochir Suppl. 2007; 18(6): 641-652. Doi: 10.1007/978-3-211-72958-8_15.
24-Goldner JS, Bruder JM, Li G, Hoffman-Kim D. Neurite bridging across micropatterned grooves. Biomaterials. 2006; 27(3): 460-472. Doi:10.1016/j.biomaterials.2005.06.035.
25-Sridharan R, Reilly RB, Buckley CT. Decellularized grafts with axially aligned channels for peripheral nerve regeneration J. Mech. Behav. Biomed. Mater .2015; 41, 124-135. Doi: 10.1016/j.jmbbm.2014.10.002.
26-Kaizawa Y, Kakinoki R, Ikeguchi R. A nerve conduit containing a vascular bundle and implanted with bone marrow stromal cells and decellularized allogenic nerve matrix. Cell Transpl.2017; 26(2):215-228. Doi: 10.3727/096368916X692951.
27-Mahdi AK, Al-Falahi NH, Nahi HH. Effects of chitosan and hyaluronic acid in healing of chemically induced oral ulcer in rabbits. KJVS. 20165; 7(2): 138-151. Doi:10.36326/kjvs/2016/v7i24331
28-AL-Falahi N H A comparative biomechanical study of repaired tendons wrapped with two biological matrices in Bucks. Iraqi J. Vet. Med.2016: 40 (1): 73-78. Doi:10.30539/iraqijvm.v40i1.141.
29-Al-Falahi NH, Abood Dhyaa. Ab, Dauood MS. Comparative evaluation of bovine pericardial membrane and amniotic membrane in wounds skin healing in rabbits. Iraqi J. Vet. Med. 2017: 41(2):137-145. Doi: 10.30539/iraqijvm.v41i2.63.
30-AL-Bayati1 A H, Al-Timmemi H, AL-Mudallal NH. Role of acellular bovine urinary bladder submucosa on skin wound healing in Iraqi goats. Iraqi J. Vet. Med.2016; 40(1):53-60. Doi: 10.30539/iraqijvm.v40i1.138.
31-Al-ebadi A.K, AL-Bayati1 AH. Effect of the acellular bovine pericardium and urinary bladder submucosa matrixes in the reconstruction of ventro-lateral hernias in bucks; molecular evaluation. Iraqi J. Vet. Med.2019: 43(1):67–74. Doi: 10.30539/iraqijvm.v43i1.474.
32-Mahdi A.K, AL-Bayati1 AH. Evaluation of two biological matrices for repairing of ventral hernia in bucks. Iraqi J. Vet. Med.2018:42(2):21-32. Doi: 10.30539/iraqijvm.v42i2.282.
33-Helal M, Hussein A. A clinical evaluation of micro and nano forms of magnesium oxide application on treatment of sciatic nerve injury. Biochemical & Cellular Archives 2021; 21:(2) ,3803.
34-Markides H, McLaren JS, Telling ND, Alom N, Al-Mutheffer EA, et, al. Translation of remote control regenerative technologies for bone repair. npj Regenerative Medicine. 2018; 3:9 Doi:10.1038/s41536-018-0048-1.
35- Helal M, Hussein A. The Effect of Local Application of Magnesium Oxide Powder on the Blood Parameters During Nerve Regeneration of Injured Sciatic Nerve in Rat IJFMT. 2022; 16:( 1), 1759. Doi: ijfmt.v16i1.18065/10.37506.