- Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19, 716–723.
- Andrews, D. F. and Mallows, C. L. (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical Society, Series B, 36, 99–102.
- Arellano-Valle, R. B., Azzalini A., Ferreira C.S. and Santoro, K. (2020). A two-piece normal measurement error model. Computational Statistics & Data Analysis, 144, 106863.
- Arellano-Valle, R. B., Gomez, H. and Quintana, F.A. (2005). Statistical inference for a general class of asymmetric distributions. Journal of Statistical Planning and Inference, 128, 427–443.
- Arellano-Valle, R. B. and Genton, M. G. (2005). On fundamental skew distributions. Journal of Multivariate Analysis, 96, 93–116.
- Arellano-Valle, R. B., Ozan, S., Bolfarine, H. and Lachos, V. H. (2005). Skew normal measurement error models. Journal of Multivariate Analysis, 96, 265–281.
- Barkhordar, Z., Maleki, M., Khodadadi, Z., Wraith, D. and Negahdari, F. (2020). A Bayesian approach on the two-piece scale mixtures of normal homoscedastic nonlinear regression models. Journal of Applied Statistics, 9, 1305–1322.
- Branco, M. D. and Dey, D. K. (2001). A general class of multivariate skew-elliptical distributions. Journal of Multivariate Analysis, 79, 99–113.
- Buonaccorsi. J. P. (2010). Measurement Error: Models, Methods, and Applications. Chapman and Hall, Boca Raton.
- Cao, C. Z., Lin, J. G., Shi, J. Q., Wang, W. and Zhang, X. Y. (2015). Multivariate measurement error models for replicated data under heavy-tailed distributions. Journal of Chemometrics, 29, 457–466.
- Cao, C. Z., Wang, W., Shi, J. Q. and Lin, J. G. (2018). Measurement error models for replicated data under asymmetric heavy-tailed distributions. Computational Economics, 52, 531–553.
- Carroll, R. J. Ruppert, D., Stefanski, L. A. and Crainiceanu, C. M. (2006). Measurement error in nonlinear models. A modern perspective (2nd edn). Chapman and Hall, Boca Raton.
- Chan, L. K. and Mak, T. K. (1979). Maximum likelihood estimation of a linear structural relationship with replication. Journal of the Royal Statistical Society, Series B, 41, 263–268.
- Cheng, C. L. and Van Ness, J. W. (1999). Statistical Regression with Measurement Error. Oxford University Press, London.
- Fuller, W. A. (1987). Measurement Error Models. Wiley, New York.
- Heteroscedastic nonlinear regression models using asymmetric and heavy tailed two-piece distributions.
AStA Advances in Statistical Analysis, 105, 451–467.
- Isogava, Y. (1985). Estimating a multivariate linear structural relationship with replication. Journal of the Royal Statistical Society, Series B, 47, 211–215.
- Gustafson, P. (2004). Measurement Error and Misclassification in Statistics and Epidemiology. Chapman and Hall, Boca Raton.
- Ghasami, S., Maleki, M., and Khodadadi, Z. (2020). Leptokurtic and platykurtic class of robust symmetrical and asymmetrical time series models. Journal of Computational and Applied Mathematics, 376, 112806.
- Lachos, V. H., Angolini, T., and Abanto-Valle, C. A. (2011). On estimation and local influence analysis for measurement errors models under heavy-tailed distributions. Statistical Papers, 52, 567–590.
- Lin, N., Bailey, B. A. and He, X. M. (2004). Adjustment of measuring devices with linear models. Technometrics, 46, 127–134.
- Lin, J. G. and Cao, C. Z. (2013). On estimation of measurement error models with replication under heavy-tailed distributions. Computational Statistics, 28, 802–829.
- Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B, 44, 226–233.
- Maleki, M., Barkhordar, Z., Khodadadi, Z., and Wraith, D. (2019c). A robust class of homoscedastic nonlinear regression models. Journal of Statistical Computation and Simulation, 89, 2765–2781.
- Maleki, M., Contreras-Reyes, J. E., and Mahmoudi, M. R. (2019d). Robust mixture modeling based on two-piece scale mixtures of normal family. Axioms, 8, 38.
- Maleki, M., and Mahmoudi, M. R. (2017). Two-piece location-scale distributions based on scale mixtures of normal family. Communications in Statistics-Theory and Methods, 46, 12356–12369.
- Meng, X. L., and Rubin, D. B. (1993). Maximum likelihood estimation via the EM algorithm: a general framework. Biometrika, 80, 267–278.
- Moravveji, B., Khodadadi, Z., and Maleki, M. (2019). A Bayesian analysis of two-piece distributions based on the scale mixtures of normal family. Iranian Journal of Science and Technology, Transactions A: Science, 43, 991–1001.
- Reiersol, O. (1950). Identifibility of a linear relation between variables which are subject to errors. Econometrica, 18, 375–389.
- Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
- Zarei, A., Khodadadi, Z., Maleki, M. and Zare, K. (2022). Robust mixture regression modeling based on two-piece scale mixtures of normal distributions. Advances in Data Analysis and Classifiation, 17, 181–210.
|