Amidi, S.M., Shahrabi, M. and Navai, I., 2004. Geological map of Zaviyeh, Geological Survey of Iran, No. 6160.
Angerer, T., Hagemann, S.G. and Danyushevsky, L.V., 2012. Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing Greenstone Belt, Western Australia. Economic Geology, 107(4): 599–644. https://doi.org/10.2113/econgeo.107.4.599
Bédard, ´E., de Vazelhes, V.D.B. and Beaudoin, G., 2022. Performance of predictive supervised classification models of trace elements in magnetite for mineral exploration. Journal of Geochemical Exploration, 236: 106959. https://doi.org/10.1016/j.gexplo.2022.106959
Bordage, A., Balan, E., Villiers, J.R., Cromarty, R., Juhin, A., Carvallo, C., Calas, G., Raju, S. P.V. and Glatzel, P., 2011. V oxidation state in Fe-Ti oxides by high-energy resolution fluorescence-detected X-ray absorption spectroscopy. Physics and Chemistry of Minerals, 38: 449–458. https://doi.org/10.1007/s00269-011-0418-3
Buddington, A. and Lindsley, D., 1964. Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5(2): 310–357. https://doi.org/10.1093/petrology/5.2.310
Canil, D., Grondahl, C., Lacourse, T. and Pisiak, L.K., 2016. Trace elements in magnetite from porphyry Cu–Mo–Au deposits in British Columbia, Canada. Ore Geology Reviews, 72(Part 1): 1116–1128. https://doi.org/10.1016/j.oregeorev.2015.10.007
Canil, D. and Lacourse, T., 2020. Geothermometry using minor and trace elements in igneous and hydrothermal magnetite. Chemical Geology, 541: 119576. https://doi.org/10.1016/j.chemgeo.2020.119576
Chen, W.T., Zhou, M.F., Li, X., Gao, J.F. and Hou, K., 2015. In-situ LA-ICP-MS trace elemental analyses of magnetite: Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, NW India. Ore Geology Reviews, 65(part 4): 929–939. https://doi.org/10.1016/j.oregeorev.2014.09.035
Craig, J.R. and Vaughan, D.J., 1994. Ore Microscopy and Ore Petrography. Mineralogical Society of America, USA, 434 pp.
Curtis, C.D., 1964. Applications of the crystal-field theory to the inclusion of trace transition elements in minerals during magmatic differentiation. Geochimica et Cosmochimica Acta, 28(3): 389–403. https://doi.org/10.1016/0016-7037(64)90112-7
Dare, S.A.S., Barnes, S.J., Beaudoin, G., Meric, J., Boutroy, E. and Potvin-Doucet, C., 2014. Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49: 785–796. https://doi.org/10.1007/s00126-014-0529-0
Deditius, A., Reich, M., Simon, A.C., Suvorova, A., Knipping, J., Roberts, M.P., Rubanov, S., Dodd, A. and Saunders, M., 2018. Nanogeochemistry of hydrothermal magnetite. Contributions to Mineralogy and Petrology, 173(46): 1–20. https://doi.org/10.1007/s00410-018-1474-1
Dunn, J.A. and Dey, A.K., 1937. Vanadium bearing titaniferous magnetite iron ores in Singh hum and Mayurbhanj, India. Mining and Geological Institute of India, Calcutta, 184 pp.
Dupuis, C. and Beaudoin, G., 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46: 319–335. http://dx.doi.org/10.1007/s00126-011-0334-y
Ehsani Nasab, P. and Ehya, F., 2019. Mineralogy and magnetite trace element geochemistry of the Niyasar iron ore deposit, Esfahan Province, Iran. Periodico di Mineralogia, 88(1): 59–73. https://doi.org/10.2451/2019PM838
Fleet, M., 1981. The structure of magnetite. Acta Crystallography, B37: 917–920. https://doi.org/10.1107/S0567740881004597
Lindsley, D.H., 1976. The crystal chemistry and structure of oxide minerals as exemplified by the Fe–Ti oxides. In: D. Rumble III, (Editor), Oxide Minerals. REVIEWS IN MINERALOGY. Mineralogical Society of America's, pp. L1–L60. https://doi.org/10.1515/9781501508561-006
Goudarzi, M., Zamanian, H. and Klotzli, U., 2024a. Geochemistry and tectono-magmatic setting of hypabyssal intrusive rocks in the south of Mamouniyeh, Urumieh-Dokhtar magmatic arc, Iran. Scientific Quarterly Journal of Geosciences, Articles in Press. Retrieved December 11, 2024 from https://www.gsjournal.ir/article_201644.html?lang=en
Goudarzi, M., Zamanian, H. and Klötzli, U. 2024b. Geochemistry, petrography, and tectono-magmatic setting of Eocene volcanic lavas in the south of Mamoniyeh, Urumieh-Dokhtar magmatic arc, Markazi Province, Iran. Petrological Journal, 15(1): 85–116. https://doi.org/10.22108/ijp.2024.139861.1315
Goudarzi, M., Zamanian, H. and Klotzli, U. 2024c. Copper mineralization pattern based on mineralogy, alteration, geochemistry of intrusive rocks and fluid inclusion in the south of Mamuoniyeh, middle part of Urumieh-Dokhtar magmatic arc, Iran. Scientific Quarterly Journal of Geosciences, 34(3): 35–62. https://doi.org/10.22071/gsj.2024.424348.2122
Goudarzi, M., Zamanian, H., Klötzli, U., Lentz, D. and Ullah, M. 2024d. Genesis of the Mamuniyeh copper deposit in the central Urumieh-Dokhtar Magmatic Arc, Iran: Constraints from geology, geochemistry, fluid inclusions, and H–O–S isotopes. Ore Geology Reviews, 175: 106279. https://doi.org/10.1016/j.oregeorev.2024.106279
Goudarzi, M., Zamanian, H., Klötzli, U. and Ullah, M. 2024e. Evidence of boiling in ore-forming process based on quartz textures and fluid inclusions studies, a case study in Mamouniyeh Cu deposit, Iran, EGU General Assembly 2024, Vienna, Austria, pp. 14–19. https://doi.org/10.5194/egusphere-egu24-8552
Hu, H., Lentz, D., Li, J.W., Mccarron, T., Zhao, X.F. and Hall, D., 2015. Reequilibration processes in magnetite from iron skarn deposits. Economic Geology, 110(1): 1–8. http://dx.doi.org/10.2113/econgeo.110.1.1
Hu, H., Li, J.W., Lentz, D., Ren, Z., Zhao, X.F., Deng, X.D. and Hall, D., 2014. Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit: Insights into ore genesis and implication for in-situ chemical analysis of magnetite. Ore Geology Reviews, 57(1): 393–405. https://doi.org/10.1016/j.oregeorev.2013.07.008
Huberty, J.M., Konishi, H., Heck, P.R., Fournelle, J.H., Valley, J.W. and Xu, H., 2012. Silician Magnetite from the Dales Gorge member of the Brockman Iron Formation, Hamersley Group, Western Australia. American Mineralogist, 97(1): 26–37. https://doi.org/10.2138/am.2012.3864
Klein, C., 2005., Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist, 90(10): 1473–1499. https://doi.org/10.2138/am.2005.1871
Klemme, S., Günther, D., Hametner, K., Prowatke, G. and Zack, T., 2006. The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chemical Geology, 234(3–4): 251–263. https://doi.org/10.1016/j.chemgeo.2006.05.005
Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Wӓlle, M., Heinrich, C.A., Holtz, F. and Munizaga, R., 2015. Trace elements in magnetite from massive iron oxide apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et Cosmochim Acta, 171: 15–38. https://doi.org/10.1016/j.gca.2015.08.010
Makvandi, S., Ghasemzadeh-Barvarz, M., Beaudoin, G., Grunsky, E.C., McClenaghan, B.M., Duchesne, C. and Boutroy, E., 2016. Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: application to mineral exploration. Ore Geology Reviews, 78: 388–408. https://doi.org/10.1016/j.oregeorev.2016.04.014
Marbouti, Z., Ehya, F., Rostami Paydar, G. and Maleki, S., 2020, Geochemical, microthermometric, and sulfur isotopic constraints on the origin of the Sarviyan iron deposit, Markazi Province, Iran. Journal of Geochemical Exploration, 210: 106451. http://dx.doi.org/10.1016/j.gexplo.2019.106451
Mason, B. and Moore, B., 1966. Principles of Geochemistry. Wiley, New York, London, 329 pp.
Mondal, R. and Baidya, T.K., 2015. Titaniferous magnetite deposits associated with Archean greenstone belt in the East Indian Sheild. Earth Sciences, 4(4–1): 15–30. http://dx.doi.org/10.11648/j.earth.s.2015040401.12
Mucke, A. and Cabral A.R., 2005. Redox and nonredox reactions of magnetite and hematite in Rocks. Chemie der Erde. 65(3): 271–278. https://doi.org/10.1016/j.chemer.2005.01.002
Nadoll, P., Angerer, T., Mauk, J.L., French, D. and Walshe, J., 2014. The chemistry of hydrothermal magnetite: a review. Ore Geology Reviews, 61: 1–32. https://doi.org/10.1016/j.oregeorev.2013.12.013
Nadoll, P., Mauk, J.L., Hayes, T.S., Koenig, A.E. and Box, S.E., 2012. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Economic Geology, 107(6): 1275–1292. http://dx.doi.org/10.2113/econgeo.107.6.1275
Nadoll, P., Mauk, J.L., Leveille, R.A. and Koenig, A.E., 2015. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Mineralium Deposita 50(4): 493–515. http://dx.doi.org/10.1007/s00126-014-0539-y
Navid Farayand Alborz company, 2017. 1:20000 geological map of Mamuniyeh exploration area (not published). exploration licence No: 102/19288. Tehran, Iran.
O’Reilly, W., 1984, Rock and Mineral Magnetism. Blackie, Glasgow and London, Chapmann and Hall, New York, 220 pp.
Ohmoto, H., 2003. Nonredox transformations of magnetite-hematite in hydrothermal systems. Economic Geology, 98(1): 157–161. http://dx.doi.org/10.2113/98.1.157
Oliver, N.H., Cleverley, J.S., Mark, G., Pollard, P.J., Fu. B., Marshall, L.J., Rubenach, M.J., Williams, P.J. and Baker, T., 2004. Modeling the role of sodic alteration in the genesis of iron oxide-copper-gold deposits, Eastern Mount Isa block, Australia. Economic Geology, 99(6): 1145–1176. http://dx.doi.org/10.2113/gsecongeo.99.6.1145
Pasteris, J.D., 1985. Relationships between temperature and oxygen fugacity among Fe-Ti oxides in two regions of the Duluth complex. Canadian Mineralogist, 23: 111–127. Retrieved December 10, 2024 from https://pubs.geoscienceworld.org/mac/canmin/article-abstract/23/1/111/11756/Relationships-between-temperature-and-oxygen?redirectedFrom=PDF
Rezaei Kahkhaei, M., Esmaili, D. and Francisco, C.G., 2014. Geochemical and isotopic (Nd and Sr) constraints on elucidating the origin of intrusions from northwest Saveh, Central Iran. Geopersia, 4(1): 103–123. https://doi.org/10.22059/jgeope.2014.51195
Riegler, T., Lescuyer, J.L., Wollenberg, P., Quirt, D. and Beaufort, D., 2014. Alteration Related to Uranium Deposits in the Kiggavik-Andrew Lake Structural Trend, Nunavut, Canada: New Insights from Petrography and Clay Mineralogy. The Canadian Mineralogist, 52(1): 27–45. http://dx.doi.org/10.3749/canmin.52.1.27
Rusk, B., Oliver, N., Brown, A., Lilly, R. and Jungmann, D., 2009. Barren magnetite breccias in the Cloncurry region, Australia; comparisons to IOCG deposits. 10th Biennial SGA Meeting, Townsville, Australia.
Ryabchikov, D. and Kogarko, L.N., 2006. Magnetite compositions and oxygen fugacities of the Khibina magmatic system. Lithos, 91(1–4): 35–45. https://doi.org/10.1016/j.lithos.2006.03.007
Saito, T., Ishikawa, N., Kamata, H., 2004. Iron–titanium oxide minerals in block-and-ash-flow deposits: implications for lava dome oxidation processes. Journal of Volcanology and Geothermal Research, 138(3–4): 283-294. https://doi.org/10.1016/j.jvolgeores.2004.07.006
Spencer, K.J., Lindsley, D.H., 1981. A solution model for coexisting iron-titanium oxides. American Mineralogist 66: 1189-1201. Retrieved December 10, 2024 from https://msaweb.org/AmMin/AM66/AM66_1189.pdf
Sun, X., Lin, H., Fu, Y., Li, D., Hollings, P., Yang, T. and Liu, Z., 2017. Trace element geochemistry of magnetite from the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China and its implications for the ore forming processes. Ore Geology Reviews, 91: 477–490. https://doi.org/10.1016/j.oregeorev.2017.09.007
Tian, J., Zhang, Y., Gong, L., Francisco, D.G. and Berador, A., 2021. Genesis, geochemical evolution and metallogenic implications of magnetite: Perspective from the giant Cretaceous Atlas porphyry Cu–Au deposit (Cebu, Philippines). Ore Geology Reviews, 133: 104084. https://doi.org/10.1016/j.oregeorev.2021.104084
Toplis, M.J. and Carroll, M.R.,1995. An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral—melt equilibria in ferro-basaltic systems. Journal of Petrology, 36(5): 1137–1170. https://doi.org/10.1093/petrology/36.5.1137
Toplis, M.J. and Corgne, A., 2002. An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contributions to Mineralogy and Petrology, 144: 22–37. http://dx.doi.org/10.1007/s00410-002-0382-5
Valkama, M., Sundblad, K., Cook, N.J. and Ivashchenko, V.I., 2016. Geochemistry and petrology of the indium-bearing polymetallic skarn ores at Pitkäranta, Ladoga Karelia, Russia. Mineralium Deposita, 51: 823–839. https://link.springer.com/article/10.1007/s00126-016-0641-4
Wang, C., Shao, Y., Zhang, X., Dick, J. and Liu, Z., 2018. Trace element geochemistry of magnetite: implications for ore genesis of the Huanggangliang Sn-Fe deposit, Inner Mongolia, northeastern China. Minerals, 8(5): 195. https://doi.org/10.3390/min8050195
Ward, L.A., Holwell, D.A., Barry, T.L., Blanks, D.E. and Graham, S.D., 2018. The use of magnetite as a geochemical indicator in the exploration for magmatic Ni-Cu-PGE sulfide deposits: a case study from Munali. Zambia Journal of Geochemical Exploration, 188: 172–184. http://dx.doi.org/10.1016/j.gexplo.2018.01.018
Wechsler, B.A., Lindsley, D.H. and Prewitt, C.T., 1984. Crystal structure and cation distribution in titanomagnetite. American Mineralogist 69(7–8): 754–770. Retrieved December 10, 2024 from https://api.semanticscholar.org/CorpusID:102428324
Wen, G., Li, J.W., Hofstra, A.H., Koenig, A.E., Lowers, H.A. and Adams, D., 2017. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton. Geochimica et Cosmochimica Acta, 213: 255–270. https://doi.org/10.1016/j.gca.2017.06.043
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Xiaoxu, Z., Juxing, T., Bin, L., Qin, W., Liang, H., Gang, Y., Rui, S., Qiang, W., Qiu, D. and Pingcuo, Z., 2023. Geochemistry of magnetite from the Mamupu Cu polymetallic deposit, Yulong belt, Tibet: implications for magnetite genesis, stages and mechanism of formation. Ore Geology Reviews, 154: 105334. http://dx.doi.org/10.1016/j.oregeorev.2023.105334
Yi, J., Shi, X., Ji, G., Zhang, L., Wang, S. and Deng, H., 2024. The Geochemical Characteristics of Trace Elements in the Magnetite and Fe Isotope Geochemistry of the Makeng Iron Deposit in Southwest Fujian and their significance in Ore Genesis. Minerals, 14(3): 217. http://dx.doi.org/10.3390/min14030217
Yin, S., Wirth, R., He, H., Ma, C., Pan, J., Xing, J., Xu, J., Fu, J. and Zhang, X.-N., 2022. Replacement of magnetite by hematite in hydrothermal systems: A refined redox-independent model. Earth and Planetary Science Letters, 577: 117282. https://doi.org/10.1016/j.epsl.2021.117282
Zarasvandi, A., Rezaei, M., Raith, J., Taheri, M., Asadi, S. and Heidari, M., 2023. Magnetite chemisltry of the Sarkuh Porphyry Cu deposit, Urumieh–Dokhtar Magmatic Arc (UDMA), Iran: A record of deviation from the path sulfide mineralization in the porphyry copper systems. Journal of Geochemical Exploration, 249: 107213. https://doi.org/10.1016/j.gexplo.2023.107213