- Alijanpour Shalmani, A., Shabanpour, M., Asadi, H., & Bagheri, F. (2011). Estimation of soil aggregate stability in forest`s soils of Guilan province by artificial neural networks and regression pedotransfer functions. Water and Soil Science, 21(3), 153-162. (In Persian with English abstract)
- Amirabedi,, Asghari, Sh., Mesri, T., & Balandeh, N. (2016). Prediction of mean weight diameter of aggregates using artificial neural network and regression models. Applied Soil Research, 4(1), 39-53. (In Persian with English abstract)
- Ahmadzadeh Kaleibar, F., & Fuladipanah, M. (2023). Assessment of regression, support vector machine, and gene expression programming transfer functions to predict soil humidity parameters in Arasbaran plain. Journal of Water and Soil Science, 27(2), 135-149. https://doi.org/10.47176/jwss.27.2.42532
- Asghari, Sh., Dizajghoorbani Aghdam, S., & Esmali, A. (2016). Investigation the spatial variability of some soil physical quality indices in Fandoghlou region of Ardabil using geostatistics. Water and Soil, 28(6), 1271-1283. https://doi.org/10.22067/jsw.v0i0.33460
- Asghari, Sh., Alimohammadi, M., Ahmadi, A., & Davatgar, N. (2017). Derivation of pedotransfer functions for estimating wet aggregate stability using fractal dimensions of particles and aggregates. Water and Soil Science, 27(1), 107-119.
- Asghari, Sh., Hatamvand, M., & Hasanpour Kashani, M. (2021). Estimating wet aggregates stability from easily available soil properties in north west of Urmia Lake. Applied Soil Research, 9(2), 102-115. (In Persian with English abstract)
- Bhattacharya, P., Maity, P.P., Ray, M., & Mridha, N. (2021). Prediction of mean weight diameter of soil using machine learning approaches. Agronomy Journal, 113(2), 1303–1316. https://doi.org/10.1002/agj2.20469
- Blake, G.R., & Hartge, K.H. (1986a). Bulk density. p. 363-375. In: Klute A. (ed). Methods of Soil Analysis Part 1, Physical and Mineralogical Methods. 2nd ed. American Society of Agronomy, Madison, WI.
- Blake, G.R., & Hartge, K.H. (1986b). Particle density. p. 377-381. In: Klute A. (ed). Methods of Soil Analysis Part 1, Physical and Mineralogical Methods. 2nd ed. ASA and SSSA, Madison, WI.
- Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems. Complex Systematic, 13, 87–129. https://doi.org/10.48550/arXiv.cs/0102027
- Ghorbani, M.A., Deo, R.C., Kashani, M.H., Shahabi M., & Ghorbani, S. (2019). Artificial intelligence-based fast and efficient hybrid approach for spatial modeling of soil electrical conductivity. Soil and Tillage Research, 186, 152–164. https://doi.org/10.1016/j.still.2018.09.012
- Gee, G.W., & Or, D. (2002). Particle-size analysis. p. 255–293. In: Dane J.H., & Topp G.C. (eds.). Methods of Soil Analysis. Part 4. SSSA Book Series No. 5. Soil Science Society of America, Madison, WI.
- Kemper, W.D., & Rosenau, K. (1986). Size distribution of aggregates. 425-442. In: Klute A. (ed). Methods of Soil Analysis Part 1, Physical and Mineralogical Methods. 2nd ed. ASA and SSSA, Madison, WI.
- Kozak, E., Pachepsky, Y.A., Sokolowski, S., Sokolowska, Z., & Stepniewski, W. (1996). A modified number-based method for estimating fragmentation fractal dimensions of soils. Soil Science Society of America Journal. 60, 1291- 1297.
- Marashi, M., Mohammadi Torkashvand, A., Ahmadi, A., & Esfandyari, M. (2019). Adaptive neurofuzzy inference system: estimation of soil aggregates stability. Acta Ecologica Sinica, 39, 95–101. https://doi.org/10.1016/j.chnaes. 2018.05.002
- Nelson, D.W., & Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter. p. 539–579. In A.L. Page et al. (ed.) Methods of Soil Analysis. Part 2. 2nd Agron. Monogr. 9. ASA and SSSA, Madison, WI.
- Page, A.L. (ed.). (1985). Methods of Soil Analysis. Part 2. Chemical and Microbiological Methods. Agronomy No. 9. American Society of Agronomy, Madison, WI.
- Sarkar, A., Maity, P.P., Ray, M., Chakraborty, D., Das, B., & Bhatia, A. (2023). Inclusion of fractal dimension in four machine learning algorithms improves the prediction accuracy of mean weight diameter of soil. Ecological Informatics. 74, 1-15. https://doi.org/10.1016/j.ecoinf.2022.101959
- Shirazi, M.A., & Boersma, L. (1984). A unifying quantitative analysis of soil texture. Soil Science Society American Journal, 48(1), 142–147.
- Yazdani, A., Mosaddeghi, M.R., Khademi, H., Ayoubi, S., & Khayamim, F. (2014). Relationship between surface aggregate stability and some soil and climate properties in Isfahan province. Soil Management, 3(2), 23-31. (In Persian with English abstract)
- Yoder, R.E. (1936). A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Journal of American Society Agronomy, 28, 337-35.
- Zhang, R., & Zhang, S., (2024). Coefficient of permeability prediction of soils using gene expression programming. Engineering Applications of Artificial Intelligence, 128(107504). https://doi.org/10.1016/j.engappai.2023.107504
|