- Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
- Ehret, A., Hochstuhl, D., Krattenmacher, N., Tetens, J., Klein, M. S., Gronwald, W., & Thaller, G. (2015). Use of genomic and metabolic information as well as milk performance records for prediction of subclinical ketosis risk via artificial neural networks. Journal of Dairy Science, 98(1), 322-329. https://doi.org/10.3168/jds.2014-8602.
- Fenlon, C., O’Grady, L., Dunnion, J., Shalloo, L., Butler, S., & Doherty, M. (2016). A Comparison of Machine Learning Techniques for Predicting Insemination Outcome in Irish Dairy Cows. Irish Conference on Artificial Intelligence and Cognitive Science. http://ceur-ws.org/Vol-1751/AICS_2016_paper_30.pdf.
- González-Recio, O., Jiménez-Montero, J. A., & Alenda, R. (2013). The gradient boosting algorithm and random boosting for genome-assisted evaluation in large data sets. Journal of Dairy Science, 96(1), 614-624. https://doi.org/10.3168/jds.2012-5630.
- Hempstalk, K., McParland, S., & Berry, D. P. (2015). Machine learning algorithms for the prediction of conception success to a given insemination in lactating dairy cows. Journal of Dairy Science, 98(8), 5262-5273. https://doi.org/10.3168/jds.2014-8984.
- Hidalgo, A., Zouari, F., Knijn, H., & Van Der Beek, S. (2018). Prediction of postpartum diseases of dairy cattle using machine learning. In Proceedings of the World Congress on Genetics Applied to Livestock Production. World Congress on Genetics Applied to Livestock Production (p. 104).
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.
- Ho, P. N., & Pryce, J. E. (2020). Predicting the likelihood of conception to first insemination of dairy cows using milk mid-infrared spectroscopy. Journal of Dairy Science, 103(12), 11535-11544. https://doi.org/10.3168/jds.2020-18589.
- Jiang, C., Chen, Y., Chen, S., Bo, Y., Li, W., Tian, W., & Guo, J. (2019). A mixed deep recurrent neural network for MEMS gyroscope noise suppressing. Electronics, 8(2), 181. https://doi.org/10.3390/electronics8020181.
- Li, B., Zhang, N., Wang, Y. G., George, A. W., Reverter, A., & Li, Y. (2018). Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods. Frontiers in Genetics, 9, 237. https://doi.org/10.3389/fgene.2018.00237.
- Li, Y., Raidan, F. S. S., Vitezica, Z., & Reverter, A. (2018). Using random forests as a prescreening tool for genomic prediction: Impact of subsets of SNPs on prediction accuracy of total genetic values. In World Congress on Genetics Applied to Livestock Production (WCGALP), February, (pp. 1130-p). Massey University.
- Long, N., Gianola, D., Rosa, G. J., Weigel, K. A., & Avendano, S. (2007). Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. Journal of Animal Breeding and Genetics, 124(6), 377-389. https://doi.org/10.1111/j.1439-0388.2007.00694.x.
- Mammadova, N., & Keskin, İ. (2013). Application of the support vector machine to predict subclinical mastitis in dairy cattle. The Scientific World Journal, 2013(1), 603897. https://doi.org/10.1155/2013/603897.
- Mikshowsky, A. A., Gianola, D., & Weigel, K. A. (2017). Assessing genomic prediction accuracy for Holstein sires using bootstrap aggregation sampling and leave-one-out cross validation. Journal of Dairy Science, 100(1), 453-464. https://doi.org/10.3168/jds.2016-11496 .
- Oluoch, L., Stachó, L., Viharos, L., Viharos, A., & Mikó, E. (2021). Random forest regression models for lactation and successful insemination in Holstein friesian cows. 1. Mathematical aspects. Gradus, 8(2), 1-8. https://doi.org/10.47833/2021.2.agr.001.
- Pascanu, R., Mikolov, T., & Bengio, Y. (2013, May). On the difficulty of training recurrent neural networks. In International conference on machine learning(pp. 1310-1318). Pmlr.
- Romadhonny, R. A., Gumelar, A. B., Fahrudin, T. M., Setiawan, W. P. A., Putra, F. D. C., Nugroho, R. D., & Budiani, J. R. (2019, September). Estrous cycle prediction of dairy cows for planned artificial insemination (AI) using multiple logistic regression. In 2019 International Seminar on Application for Technology of Information and Communication (Isemantic) (pp. 157-162). IEEE. https://doi.org/10.1109/isemantic.2019.8884272.
- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. https://doi.org/10.1038/323533a0.
- Rutten, C. J., Steeneveld, W., Vernooij, J. C. M., Huijps, K., Nielen, M., & Hogeveen, H. (2016). A prognostic model to predict the success of artificial insemination in dairy cows based on readily available data. Journal of Dairy Science, 99(8), 6764-6779. https://doi.org/10.3168/jds.2016-10935.
- Shahinfar, S., Page, D., Guenther, J., Cabrera, V., Fricke, P., & Weigel, K. (2014). Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms. Journal of Dairy Science, 97(2), 731–742. https://doi.org/10.3168/jds.2013-6693.
- Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040-53065. https://doi.org/10.1109/access.2019.2912200.
- Tyrrell, H. F., & Reid, J. T. (1965). Prediction of the energy value of cow's milk. Journal of Dairy Science, 48(9), 1215-1223. https://doi.org/10.3168/jds.s0022-0302(65)88430-2.
- Yao, C., Zhu, X., & Weigel, K. A. (2016). Semi-supervised learning for genomic prediction of novel traits with small reference populations: an application to residual feed intake in dairy cattle. Genetics Selection Evolution, 48, 1-9. https://doi.org/10.1186/s12711-016-0262-5.
- Zaheer, R., & Shaziya, H. (2019). A study of the optimization algorithms in deep learning. In 2019 Third International Conference On Inventive Systems And Control (ICISC), January, (pp. 536-539). IEEE. https://doi.org/10.1109/icisc44355.2019.9036442.
|