- Akey, J. M., Zhang, G., Zhang, K., Jin, L., & Shriver, M. D. (2002). Interrogating a high-density SNP map for signatures of natural selection. Genome Research, 12(12), 1805-1814. doi: 10.1101/gr.631202.
- Alim, M. A., Xie, Y., Fan, Y., Wu, X., Sun, D., Zhang, Y., Zhang, S., Zhang, Y., Zhang Q., & Liu, L. (2013) Genetic effects of ABCG2 polymorphism on milk production traits in the Chinese Holstein cattle. Journal of Applied Animal Research, 41(3), 333-338. http://dx.doi.org/1080/09712119.2013.782873
- Bertolini, F., Servin, B., Talenti, A., Rochat, E., Kim, E., Oget, C., Palhiere, I., Crisa, A., Catillo, G., & Steri, R. (2018). Signatures of selection and environmental adaptation across the goat genome post-domestication. Genetic Selection Evolution, 50, 57. oi: 10.1186/s12711-018-0421-y.
- Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience, 4, 7. http://dx.doi.org/1186/s13742-015-0047-8.
- Cheruiyot, E. K., Bett, R. C., Amimo, J. O., Zhang Y., Mrode, R., & Mujibi, F. D. N. )2018(. Signatures of selection in admixed dairy cattle in Tanzania. Frontiers in Genetics, 9, 607. doi: 10.3389/fgene.2018.00607.
- Chen, L., Wang, X., Cheng, D., Chen, K., Fan, Y., Wu, G., You, J., Liu, S., & Ren, J. )2019(. Population genetic analyses of seven Chinese indigenous chicken breeds in a context of global breeds. Animal Genetics, 50, 82–86. doi: 10.1111/age.12732.
- Delgado, J. V., Landi, V., Barba, C. J., Fern´andez, J., G´omez, M. M., Camacho, M. E., Martı´nez, M. A., Navas, F. J., & Le´on, J. M. (2017). Murciano-Granadina Goat: A Spanish local breed ready for the challenges of the twenty-first century. In: Sustainable Goat Production in Adverse Environments: Volume II: Local Goat Breeds (J. Sim˜oes and C. Guti´errez eds), pp. 205–19. Springer International Publishing, Cham, Switzerland.
- Do, D. N., Schenkel, F. S., Miglior, F., Zhao, X., & Ibeagha-Awemu, E. M. (2018). Genome wide association study identifies novel potential candidate genes for bovine milk cholesterol content. Scientific Reports, 8(1), 13239. http://dx.doi.org/1038/s41598-018-31427-0.
- Du, C., Deng, T., Zhou, Y., Ye, T., Zhou, Z., Zhang, S., Shao, B., Wei, P., Sun, H., Khan, F. A, Yang, L., & Hua G. (2019). Systematic analyses for candidate genes of milk production traits in water buffalo (Bubalus Bubalis). Animal Genetics, 50(3), 207-216. http://dx.doi.org/1111/age.12739.
- Fleming, D. S., Weigend, H., Simianer, A., Weigend, M., Rothschild, C., Schmidt, C., Ashwell, M., Persia, J., & Lamont, S. )2017(. Genomic comparison of indigenous African and Northern European chickens reveals putative mechanisms of stress tolerance related to environmental selection pressure. G3: Genes, Genomes, Genetics, 7(5), 1525-1537. doi: 10.1534/g3.117.041228.
- Galal, S., Abdel-Rasoul, F., Shaat, I., & Anous M. (2005). On-station characterizationof small ruminant breeds in Egypt. Characterization of Small Ruminant Breeds in West Asia and North Africa. Luis Inigez, editor. Aleppo.
- Gebreselase, H. B., Nigussie, H., Wang, C., & Luo, C. (2024). Genetic diversity, population structure and selection signature in begait goats revealed by whole-genome sequencing. Animals, 14, 307. https://doi.org/10.3390/ani14020307.
- Gebreyesus, G., Buitenhuis, A. J., Poulsen, N. A., Visker, M., Zhang, Q., & Van Valenberg, H. J. F. (2019). Multi-population GWAS and enrichment analyses reveal novel genomic regions and promising candidate genes underlying bovine milk fatty acid composition. BMC Genomics, 20, 178. http://dx.doi.org/1186/s12864-019-5573-9.
- Guan, D., Martínez, A., Luigi-Sierra, M. G., Delgado, J. V., Landi, V., Castelló, A., Fernández Álvarez, J., Such, X., Jordana, J., & Amills, M. (2021). Detecting the footprint of selection on the genomes of Murciano-Granadina goats. Animal Genetics, 52(5), 683-693. http://dx.doi.org/1111/age.13113. Epub 2021 Jul 1.
- Huang, C., Zhao, Q., Chen, Q., Su, Y., Ma, Y., Ye, S., & Zhao, Q.(2024). Runs of homozygosity detection and selection signature analysis for local goat breeds in Yunnan, China. Genes, 15, 313 https://doi.org/10.3390/genes1503031
- Kessler, E., Gross, J., Bruckmaier, R., & Albrecht, C. (2014). Cholesterol metabolism, transport, and hepatic regulation in dairy cows during transition and early lactation. Journal of Dairy Science, 97, 5481–5490, https://doi.org/10.3168/jds.2014-7926.
- Kim, H., Song, K. D., Kim, H. J., Park, W., Kim, J., & Lee, T. (2015). Exploring the genetic signature of body size in Yucatan miniature Pig. PLoS One, 10, 4e0121732. doi: 10.1371/journal.pone.0121732.
- Kim, H. S. (2013) Role of insulin-like growth factor binding protein-3 in glucose and lipid metabolism. Annals of Pediatric Endocrinology and Metabolism, 18, 9–12. doi: 10.6065/apem.2013.18.1.9. Epub 2013 Mar 31.
- Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Porto Neto, L. R., San Cristobal, M., Servin, B., McCulloch, R., Whan, V., McEwan, J., & Dalrymple, B. (2012). International sheep genomics consortium members. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biological, 10(2), e1001258. oi: 10.1371/journal.pbio.1001258. Epub 2012 Feb 7.
- Li, X. B., Chen, J., Deng, M. J., Wang, F., Du, Z. W., & Zhang, J. W. (2011). Zinc finger protein HZF1 promotes K562 cell proliferation by interacting with and inhibiting INCA1. Molecular Medicine Reports, 4, 1131–1137. https://doi.org/10.3892/mmr.2011.564.
- Luigi-Sierra, M. G., Fernández, A., Martínez, A., Guan, D., Delgado, J. V., Álvarez, J. F., Landi, V., Such, F. X., Jordana, J., Saura, M. & Amills, M. (2022). Genomic patterns of homozygosity and inbreeding depression in Murciano-Granadina goats. Journal of Animal Science Biotechnology, 13(1), 35. doi: 10.1186/s40104-022-00684-5.
- Massender, E., Oliveira, H. R., Brito, L. F., Maignel, L., Jafarikia, M., Baes, C. F., Sullivan, B., & Schenkel, F. S. (2023). Genome-wide association study for milk production and conformation traits in Canadian Alpine and Saanen dairy goats. Journal of Dairy Science, 106(2), 1168-1189. http://dx.doi.org/3168/jds.2022-22223.
- Nicolazzi, E. L., Caprera, A., Nazzicari, N., Cozzi, P., Strozzi, F., & Lawley, C. (2015). SNPchiMp v. 3: integrating and standardizing single nucleotide polymorphism data for livestock species. BMC Genomics, 16, 283. doi: 10.1186/s12864-015-1497-1.
- Ollier, S., Chauvet, S., Martin, P., Chilliard, Y., & Leroux, C. (2008). Goat's αS1-casein polymorphism affects gene expression profile of lactating mammary gland. Animal, 2(4), 566-73. http://dx.doi.org/1017/S1751731108001584.
- Pegolo, S., Momen, M., Morota, G., Rosa, G. J. M., Gianola, D., Bittante, G., & Cecchinato, A. (2020). Structural equation modeling for investigating multi-trait genetic architecture of udder health in dairy cattle. Scientific Reports, 10(1), 7751. http://dx.doi.org/1038/s41598-020-64575-3.
- Qanbari, S., Strom, T. M., Haberer, G., Weigend, S., Gheyas, A. A., Turner, F., Burt, D. W., Preisinger, R., Gianola, D., & Simianer, H. (2012). A high-resolution genome-wide scan for significant selective sweeps: An application to pooled sequence data in laying chickens. PLoS One, 7(11), e49525. http://dx.doi.org/1371/journal.pone.0049525.
- Qanbari, S., Pausch, H., Jansen, S., Somel, M., Strom, T.M., Fries, R., Nielsen, R. & Simianer, H. (2014). Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genetics, 10(2), e1004148. doi: 10.1371/journal.pgen.1004148.
- Rahimmadar, S., Ghaffari, M., Mokhber, M., & Williams J. L. (2021). Linkage disequilibrium and effective population size of buffalo populations of Iran, Turkey, Pakistan, and Egypt using a medium density SNP array. Frontiers in Genetics, 12, 608186. doi: 10.3389/fgene.2021.608186.
- Saravanan, K. A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G. K., Dutt, T., Mishra, B. P., & Singh, R. K. (2021). Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 113(3), 955-963. doi: 10.1016/j.ygeno.2021.02.009. Epub 2021 Feb 19.
- Salgado Pardo, J. I., Delgado Bermejo, J. V., González Ariza, A., León Jurado, J. M., Marín Navas, C., Iglesias Pastrana, C., Martínez Martínez, M. D. A., & Navas González, F. J. (2022). Candidate genes and their expressions involved in the regulation of milk and meat production and quality in goats (Capra hircus). Animals, 12, 988. https://doi.org/10.3390/ani12080988.
- Sallam, A. M., Reyer, H., Wimmers, K., Bertolini, F., Aboul-Naga, A., Braz, C. U. & Rabee, A. E. (2023). Genome-wide landscape of runs of homozygosity and differentiation across Egyptian goat breeds. BMC Genomics, 24(1), 573. doi: 10.1186/s12864-023-09679-6.
- Selionova, M., Trukhachev, V., Aibazov, M., Sermyagin, A., Belous, A., Gladkikh, M., & Zinovieva, N. (2024). Genome-wide association study of milk composition in Karachai goats. Animals, 14, 327. https://doi.org/10.3390/ani14020327
- Scholtens, M., Jiang, A. Smith, A., Littlejohn, M., Lehnert, K., Snell, R., Lopez-Villalobos, N., Garrick, D., & Blair, H. (2020). Genome-wide association studies of lactation yields of milk, fat, protein and somatic cell score in New Zealand dairy goats. Journal of Animal Science and Biotechnology, 11, 55. https://doi .org/10.1186/s4010402000453-2.
- Varma Shrivastav, S., Bhardwaj, A., Pathak, K. A., & Shrivastav, A. (2020). Insulin-like growth factor binding protein-3 (IGFBP-3): Unraveling the role in mediating IGF-independent effects within the cell. Frontiers in Cell Development Biology, 8, 286. http://dx.doi.org/3389/fcell.2020.00286.
- Weir, B. S., & Cockerham, C. C. (1984). Estimating F‐statistics for the analysis of population structure. Evolution, 38(6), 1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x.
- Waineina, R. W., Okeno, T. O., Ilatsia, E. D., & Ngeno, K. (2022). Selection signature analyses revealed genes associated with adaptation, production, and reproduction in selected goat breeds in Kenya. Frontiers in Genetics, 13, 858923. http://dx.doi.org/3389/fgene.2022.858923
- Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 1, 395-420.
- Yao, D., Luo, J., He, Q., Xu, H., Li, J., Shi, H., Wang, H., Chen, Z., & Loor, J. (2016). Liver X receptor _ promotes the synthesis of monounsaturated fatty acids in goat mammary epithelial cells via the control of stearoyl-coenzyme A desaturase 1 in an SREBP-1-dependent manner. Journal of Dairy Science, 99, 6391–6402. doi: 10.3168/jds.2016-10990. Epub 2016 May 18.
- Zhao, F., Deng, T., Shi, L., Wang, W., Zhang, Q., Du, L., & Wang, L. (2020). Genomic scan for selection signature reveals fat deposition in Chinese indigenous sheep with extreme tail types. Animals (Basel), 10(5), 773. http://dx.doi.org/3390/ani10050773.
|