[1] Abdollahzadeh, B., Gharehchopogh, F.S., Khodadadi, N. and Mirjalili, S. Mountain gazelle optimizer: a new nature-inspired metaheuristic algo-rithm for global optimization problems, Advances in Engineering Software, 174 (2022), 103282.
[2] Agushaka, J.O., Ezugwu, A.E. and Abualigah, L. Dwarf mongoose op-timization algorithm, Comput. Methods Appl. Mech. Engrg, 391 (2022), 114570.
[3] Ahmad, A. and Dey, L. A k-mean clustering algorithm for mixed numeric and categorical data, Data & Knowledge Engineering, 63 (2007), 503–27.
[4] Alhawarat, M. and Hegazi, M. Revisiting K-Means and topic modeling, a comparison study to cluster arabic documents, IEEE Access, 6 (2018), 42740–42749.
[5] Aljarah, I., Mafarja, M., Heidari, A.A., Faris, H. and Mirjalili, S. Cluster-ing analysis using a novel locality-informed grey wolf-inspired clustering approach, Knowledge and Information Systems, 62 (2020), 507–539.
[6] Almasri, A., Alkhawaldeh, R.S. and Çelebi, E. Clustering-Based EMT Model for Predicting Student Performance, Arab. J. Sci. Eng, 45 (2020), 10067–10078.
[7] Alswaitti, M., Albughdadi, M. and Isa, N.A.M. Variance-based differential evolution algorithm with an optional crossover for data clustering, Appl. Soft Comput, 80 (2019), 1–17.
[8] Barbakh, W.A. Wu, Y. and Fyfe, C. Review of clustering algorithms, In Non-Standard Parameter Adaptation for Exploratory Data Analysis, Springer: Berlin/Heidelberg, Germany, (2009), 7–28.
[9] Çomak, E. A modified particle swarm optimization algorithm using Renyi entropy-based clustering, Neural Computing and Applications, 27 (5) (2016), 1381–1390.
[10] Dorigo, M., Bonabeau, E. and Theraulaz, G. Ant algorithms and stig-mergy, Future Generation Computer System, 16 (2000), 851–871.
[11] Eberhart, R. and Kennedy, J. Particle swarm optimization, InProceed-ings of the IEEE international conference on neural networks, 4 (1995), 1942-1948.
[12] Eesa, A.S. and Orman, Z. A new clustering method based on the bio-inspired cuttlefish optimization algorithm, Expert Syst, 37 (2020), e12478. [13] Esmin, A.A., Coelho, R.A. and Matwin, S. A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data, Artif. Intell. Rev, 44 (2015), 23–45.
[14] Gan, G., Ma, C. and Wu, J. Data clustering: theory, algorithms, and ap-plications, SIAM, Society for Industrial and Applied Mathematics, (2007).
[15] Gandomi, A.H., Yang, X.S. and Alavi, A.H. Cuckoo search algorithm, a metaheuristic approach to solve structural optimization problems, Eng. Comput, 29 (2013), 17–35.
[16] Hu, F., Liu, J., Li, L. and Liang, J. Community detection in complex networks using Node2vec with spectral clustering, Physica A: Statistical Mechanics and its Applications, 545 (2020), 123633.
[17] Jadhav, A.N. and Gomathi, N. Kernel-based exponential grey wolf opti-mizer for rapid centroid estimation in data clustering, Jurnal Teknologi, 78 (11) (2016), 65–74.
[18] Jadhav, A.N. and Gomathi, N. WGC: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering, Alex. Eng. J, 57 (2018), 1569–1584.
[19] Jain, A.K. Data clustering: 50 years beyond K-means, Pattern Recognit. Lett, 31 (2010), 651–666.
[20] Jain, A.K. and Dubes, R.C. Algorithms for Clustering Data, Englewood Cliffs, NJ, USA: Prentice-Hall, (1988).
[21] Kumar, N. and Kumar, H. A fuzzy clustering technique for enhancing the convergence performance by using improved Fuzzy c-means and Particle Swarm Optimization algorithms, Data & Knowledge Engineering, 140 (2022), 102050.
[22] Kumar, Y. and Sahoo, G. Hybridization of magnetic charge system search and particle swarm optimization for efficient data clustering using neighborhood search strategy, Soft Computing, 19 (12) (2015), 3621–3645.
[23] Kushwaha, N., Pant, M., Kant, S. and Jain, V.K. Magnetic optimization algorithm for data clustering, Pattern Recognition Letters, 115 (2018), 59–65.
[24] Liang, J., Suganthan, P. and Deb, K. Novel composition test func-tions for numerical global optimization, in Swarm Intelligence Symposium, 2005. SIS 2005, Proceedings 2005 IEEE, (2005), 68–75.
[25] Luque-Chang, A., Cuevas, E., Fausto, F., Zaldívar, D. and Pérez, M. So-cial spider optimization algorithm: modifications, applications, and per-spectives, Mathematical Problems in Engineering, 1 (2018), 6843923.
[26] Lv, Z., Liu, T., Shi, C., Benediktsson, J.A. and Du, H. Novel land cover change detection method based on k-Means clustering and adaptive majority voting using bitemporal remote sensing images, IEEE Access, 7 (2019), 34425–34437.
[27] MacQueen, J. Some methods for classification and analysis of multivari-ate observations, in Proc. 5th Berkeley Symp. Math. Statist. Probab, 1 (1967), 281–297.
[28] Mansalis, S., Ntoutsi, E., Pelekis, N. and Theodoridis, Y. An evalua-tion of data stream clustering algorithms, Statistical Analysis and Data Mining: The ASA Data Science Journal, 11 (2018), 167–187.
[29] Meng, Y., Liang, J., Cao, F. and He, Y. A new distance with deriva-tive information for functional k-means clustering algorithm, Inf. Sci. 463 (2018), 166–185.
[30] Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowledge-based systems. 89 (2015), 228–249.
[31] Mirjalili, S. and Lewis, A. The whale optimization algorithm, Adv. Eng. Softw. 95 (2016), 51–67.
[32] Mirjalili, S., Mirjalili, S.M. and Lewis, A. Grey wolf optimizer, Advances in engineering software. 69 (2014), 46–61.
[33] Nanda, S.J. and Panda, G. A survey on nature inspired metaheuristic algorithms for partitional clustering, Swarm Evol. Comput. 16 (2014), 1–18.
[34] Nasiri, J. and Khiyabani, F.M. A whale optimization algorithm (WOA) approach for clustering, Cogent Math. Stat. 5 (2018), 1483565.
[35] Rodriguez, M.Z., Comin, C.H.v Casanova, D., Bruno, O.M., Aman-cio, D.R., Costa, L.D.F. and Rodrigues, F.A. Clustering algo-rithms: A comparative approach, PLoS ONE 14(1), e0210236 (2019).
https://doi.org/10.1371/journal.pone.0210236 [36] Saida, I.B., Nadjet, K. and Omar, B. A new algorithm for data clus-tering based on cuckoo search optimization, In Genetic and Evolutionary Computing, Springer: Berlin/Heidelberg, Germany. (2014), 55–64.
[37] Sayed, G.I. and Hassanien, A.E. A hybrid SA-MFO algorithm for func-tion optimization and engineering design problems, Complex & Intelligent Systems. 4 (2018), 195–212.
[38] Shojaee, Z., Shahzadeh Fazeli, S.A., Abbasi, E. and Adibnia, F. Feature Selection based on Particle Swarm Optimization and Mutual Information, AI and Data Mining. 9(1) (2021), 39–44.
[39] Singh, T. A novel data clustering approach based on whale optimization algorithm, Expert Syst. 38 (2020), e12657.
[40] Singh, T. and Mishra, K.K. Data clustering using environmental adap-tation method In International Conference on Hybrid Intelligent Systems, Springer. (2019), 156–164.
[41] Singh, T., Mishra, K.K. and Ranvijay. A variant of EAM to uncover community structure in complex networks, Int. J. Bio-Inspired Comput. 16 (2020), 102–110.
[42] Singh, T., Saxena, N., Khurana, M., Singh, D., Abdalla, M. and Alsha-zly, H. Data clustering using moth-flame optimization algorithm, Sensors. 21(12) (2021), 4086.
[43] Suganthan, P.N., Hansen, N., Liang, J. J., Deb, K., Chen, Y.P., Auger, A. and Tiwari, S. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, KanGAL re-port. 2005005 (2005).
[44] Talevi, A. and Bellera, CL. Clustering of small molecules: new per-spectives and their impact on natural product lead discovery, Frontiers in Natural Products. 3 (2024), 1367537.
[45] Wolpert, D.H. and Macready, W.G. No free lunch theorems for opti-mization, IEEE Trans Evol Comput. 1 (1997), 67–82.
[46] Zhang, Q.H., Li, B.L., Liu, Y.J., Gao, L., Liu, L.J. and Shi, X.L. Data clustering using multivariant optimization algorithm, Int. J. Mach. Learn. Cybern. 7 (5) (2016), 773–782.
[47] Zhu, J., Jiang, Z., Evangelidis, G.D., Zhang, C., Pang, S. and Li, Z. Efficient registration of multi-view point sets by K-means clustering, Inf. Sci. 488 (2019), 205–218.