- Aghdam, M.S., Palma, J.M., & Corpas, F.J. (2020). NADPH as a quality footprinting in horticultural crops marketability. Trends in Food Science & Technology, 103, 152-161. https://doi.org/10.1016/j.tifs.2020.07.002
- Ahamad, S., Asrey, R., Vinod, B.R., Meena, N.K., Menaka, M., Prajapati, U., & Saurabh, V. (2024). Maintaining postharvest quality and enhancing shelf-life of bell pepper (Capsicum annuum) using brassinosteroids: A novel approach. South African Journal of Botany, 169, 402-412. https://doi.org/10.1016/j.sajb.2024.04.049
- Ahammed, G.J., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., & Yu, J.Q. (2013). Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. Biologia Plantarum, 57(1), 154-158. https://doi.org/10.1007/s10535-012-0128-9
- Ali, M.M., Anwar, R., Malik, A.U., Khan, A.S., Ahmad, S., Hussain, Z., Hasan, M.U., Nasir, M., & Chen, F. (2022). Plant growth and fruit quality response of strawberry is improved after exogenous application of 24-epibrassinolide. Journal of Plant Growth Regulation,41(4), 1786-1799. https://doi.org/10.1007/s00344-021-10422-2
- Ali, S., Anjum, M.A., Nawaz, A., Naz, S., Hussain, S., & Ejaz, S. (2019). Effects of brassinosteroids on postharvest physiology of horticultural crops: A concise review. Journal of Horticultural Science and Technology, 2(3), 62-68.
- Beaudoin-Eagan, L.D., & Thorpe, T.A. (1985). Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiology, 78(3), 438-441. https://doi.org/10.1104/pp.78.3.438
- Bellincontro, A., De Santis, D., Botondi, R., Villa, I., & Mencarelli, F. (2004). Different postharvest dehydration rates affect quality characteristics and volatile compounds of Malvasia, Trebbiano and Sangiovese grapes for wine production. Journal of the Science of Food and Agriculture, 84(13), 1791-1800. https://doi.org/10.1002/jsfa.1889
- Cao, S., Hu, Z., Zheng, Y., Yang, Z., & Lu, B. (2011). Effect of BTH on antioxidant enzymes, radical-scavenging activity and decay in strawberry fruit. Food Chemistry, 125(1), 145-149. https://doi.org/10.1016/j.foodchem.2010.08.051
- Carlos, E., Lerma,T.A., & Martínez, J. M. (2021). Phytohormones and plant growth regulators—a review. Journal of Scicence with Technologicl Applications, 10, 27-65. https://doi.org/10.34294/j.jsta.21.10.66
- Chai, Y.M., Zhang, Q., Tian, L., Li, C.L., Xing, Y., Qin, L., & Shen, Y.Y. (2013). Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regulation, 69, 63–69. https://doi.org/10.1007/s10725-012-9747-6
- Cheng, G.W., & Breen, P.J. (1991). Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science, 116(5). 865-869. https://doi.org/10.21273/JASHS.116.5.865
- Chun, O.K., Kim, D.O., Moon, H.Y., Kang, H.G.., & Lee, C.Y. (2003). Contribution of individual polyphenolics to total antioxidant capacity of plums. Journal of Agricultural and Food Chemistry, 51(25), 7240-7245. https://doi.org/10.1021/jf0343579
- de Pascual-Teresa, S., & Sanchez-Ballesta, M.T. (2008). Anthocyanins: from plant to health. Phytochemistry reviews, 7, 281-299. https://doi.org/10.1007/s11101-007-9074-0
- Diarte, C., Iglesias, A., Graell, J., & Lara, I. (2022). Firmness and cell wall changes during maturation of ‘Arbequina’olive fruit: The impact of irrigation. Horticulturae,8(10), 872. https://doi.org/10.3390/horticulturae8100872
- Doving, A., Mage, F., & Vestrheim, S. (2005). Methods for testing strawberry fruit firmness: a review. Small Fruits Review,4(2): 11-34. https://doi.org/10.1300/J301v04n02_03
- Fang, H., Zhou, Q., Cheng, S., Zhou, X., Wei, B., Zhao, Y., & Ji, S. (2021). 24-epibrassinolide alleviates postharvest yellowing of broccoli via improving its antioxidant capacity. Food chemistry, 365, 130529. https://doi.org/10.1016/j.foodchem.2021.130529
- Ferguson, L., & Lessenger, J.E. (2006). Plant growth regulators. Agricultural Medicine: A Practical Guide, 156-166. https://doi.org/10.1007/0-387-30105-4_15
- Ge, Y.H., Li, C.Y., Tang, R.X., Sun, R.H., & Li, J.R. (2015). Effects of postharvest brassinolide dipping on quality parameters and antioxidant activity in peach fruit. In III International Symposium on Postharvest Pathology: Using Science to Increase Food Availability, 1144, 377-384. https://doi.org/10.17660/ActaHortic.2016.1144.56
- Gutierrez-Villamil, D.A., Balaguera-López, H.E., & Alvarez-Herrera, J.G. (2023). Brassinosteroids improve postharvest quality, antioxidant compounds, and reduce chilling injury in ‘Arrayana’ mandarin fruits under cold storage. Horticulturae,9(6), 622. https://doi.org/10.3390/horticulturae9060622
- Habibi, F., Serrano, M., Zacarias, L., Valero, D., & Guillen, F. (2021). Postharvest application of 24-epibrassinolide reduces chilling injury symptoms and enhances bioactive compounds content and antioxidant activity of blood orange fruit. Frontiers in Plant Science, 12, 629733. https://doi.org/10.3389/fpls.2021.629733
- He, Y., Li, J., Ban, Q., Han, S., & Rao, J. (2018). Role of brassinosteroids in persimmon (Diospyros kaki L.) fruit ripening. Journal of Agricultural and Food Chemistry, 66, 2637-2644.
- Hu, W., Sarengaowa, Guan, Y., & Feng, K. (2022). Biosynthesis of phenolic compounds and antioxidant activity in fresh-cut fruits and vegetables. Frontiers in Microbiology, 13, 906069. https://doi.org/10.3389/fmicb.2022.906069
- Ikegaya, A., Toyoizumi, T., Ohba, S., Nakajima, T., Kawata, T., Ito, S., & Arai, E. (2019). Effects of distribution of sugars and organic acids on the taste of strawberries. Food Science & Nutrition,7(7), 2419-2426. https://doi.org/10.1002/fsn3.1109
- Islam, M., Ali, S., Nawaz, A., Naz, S., Ejaz, S., Shah, A.A., & Razzaq, K. (2022). Postharvest 24-epibrassinolide treatment alleviates pomegranate fruit chilling injury by regulating proline metabolism and antioxidant activities. Postharvest Biology and Technology, 188, 111906. https://doi.org/10.1016/j.postharvbio.2022.111906
- Kelly, K., Whitaker, V.M., & do Nascimento Nunes, M.C. (2016). Physicochemical characterization and postharvest performance of the new Sensation®‘Florida127’strawberry compared to commercial standards. Scientia Horticulturae, 211, 283-2. https://doi.org/10.1016/j.scienta.2016.09.012
- Khatoon, F., Kundu, M., Mir, H., & Nandita, K. (2023). Exogenous Brassinolide Application Improves Growth, Yield and Quality of Strawberry Grown in the Subtropics. Erwerbs-Obstbau, 65(6), 2271-2279. https://doi.org/10.1007/s10341-023-00981-x
- Khripach, V., Zhabinskii, V., & de Groot, A. (2000). Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Annals of botany, 86(3), 441-447. https://doi.org/10.1006/anbo.2000.1227
- Kou, Y., Ren, J., Ma, Y., Guo, R., Shang, J., Qiu, D., & Ma, C. (2023). Effects of Exogenous Substances Treatment on Fruit Quality and Pericarp Anthocyanin Metabolism of Peach. Agronomy, 13(6), 1489. https://doi.org/10.3390/agronomy13061489
- Lester, G.E., Lewers, K.S., Medina, M.B., & Saftner, R.A. (2012). Comparative analysis of strawberry total phenolics via Fast Blue BB vs. Folin–Ciocalteu: Assay interference by ascorbic acid. Journal of Food Composition and Analysis, 27(1), 102-107. https://doi.org/10.1016/j.jfca.2012.05.003
- Li, J., Guo, T., Guo, M., Dai, X., Xu, X., Li, Y., Song, Z., & Liang, M., (2023). Exogenous BR delayed peach fruit softening by inhibiting pectin degradation enzyme genes. Frontiers in Plant Science,14, 1226921. https://doi.org/10.3389/fpls.2023.1226921
- Li, S., Zheng, H., Lin, L., Wang, F., & Sui, N. (2021). Roles of brassinosteroids in plant growth and abiotic stress response. Plant Growth Regulation,93, 29-38. https://doi.org/10.1007/s10725-020-00672-7
- Luan, L.Y., Zhang, Z.W., Xi, Z.M., Huo, S.S., & Ma, L.N. (2013). Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. South African Journal of Enology and Viticulture, 34(2), 196-203.
- Ma, F., An, Z., Yue, Q., Zhao, C., Zhang, S., Sun, X., Li, K., Zhao, L., & Su, L. (2022). Effects of brassinosteroids on cancer cells: A review. Journal of Biochemical and Molecular Toxicology, 36(6), e23026. https://doi.org/10.1002/jbt.23026
- Min, Z., Jiang, L., Zhao, Y., Wang, X., Liu, Q., & Zhang, Y. (2022). Effects of 24-epibrassinolide on the postharvest quality and antioxidant activities of blueberry fruits. New Zealand Journal of Crop and Horticultural Science, 1-14. https://doi.org/10.1080/01140671.2022.2128828
- Montero, T.M., Molla, E.M., Esteban, R.M., & Lopez-Andreu, F.J. (1996). Quality attributes of strawberry during ripening. Scientia Horticulturae, 65(4), 239-250. https://doi.org/10.1016/0304-4238(96)00892-8
- Nolan, T.M., Vukašinović, N., Liu, D., Russinova, E., & Yin, Y. (2020). Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. The Plant Cell, 32(2), 295-318. https://doi.org/10.1105/tpc.19.00335
- Pakkish, Z., Ghorbani, B., & Najafzadeh, R. (2019). Fruit quality and shelf life improvement of grape cv. Rish Baba using Brassinosteroid during cold storage. Journal of Food Measurement and Characterization, 13, 967-975. https://doi.org/10.1007/s11694-018-0011-2
- Peng, Z., Liu, G., Li, H., Wang, Y., Gao, H., Jemrić, T., & Fu, D. (2022). Molecular and genetic events determining the softening of fleshy fruits: a comprehensive review. International Journal of Molecular Sciences,23(20), 12482. https://doi.org/10.3390/ijms232012482
- Peng, J., Tang, X., & Feng, H. (2004). Effects of brassinolide on the physiological properties of litchi pericarp (Litchi chinensis cv. nuomoci). Scientia Horticulturae, 101(4), 407-416. https://doi.org/10.1016/j.scienta.2003.11.012
- Pennington, J.A., & Fisher, R.A. (2009). Classification of fruits and vegetables. Journal of Food Composition and Analysis, 22, S23-S31. https://doi.org/10.1016/j.jfca.2008.11.012
- Pereira-Netto, A. B. (Ed.). (2012). Brassinosteroids: practical applications in agriculture and human health. ebook, Curitiba- PR, Brazil, Bentham Science Publishers.
- Rademacher, W. (2015). Plant growth regulators: backgrounds and uses in plant production. Journal of plant growth regulation,34, 845-872. https://doi.org/10.1007/s00344-015-9541-6
- Sanchez-Ballesta, M.T., Maoz, I., & Figueroa, C.R. (2022). Secondary metabolism and fruit quality. Frontiers in Plant Science, 13, 1072193. https://doi.org/10.3389/fpls.2022.1072193
- Simkova, K., Veberic, R., Grohar, M.C., Pelacci, M., Smrke, T., Ivancic, T., Medic, A., Cvelbar Weber, N., & Jakopic, J. (2024). Changes in the Aroma Profile and Phenolic Compound Contents of Different Strawberry Cultivars during Ripening. Plants, 13(10), 1419. https://doi.org/10.3390/plants13101419
- Simpson, D. (2018). The economic importance of strawberry crops. The genomes of rosaceous berries and their wild relatives, 1-7. Compendium of plant genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-76020-9_1
- Singh, B., Singh, J.P., Kaur, A., & Singh, N. (2020). Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International, 132, 109114. https://doi.org/10.1016/j.foodres.2020.109114
- Song, Y., Hu, C., Xue, Y., Gu, J., He, J., & Ren, Y. (2022). 24-epibrassinolide enhances mango resistance to Colletotrichum gloeosporioides via activating multiple defense response. Scientia Horticulturae,303, 111249. https://doi.org/10.1016/j.scienta.2022.111249
- Tang, J., Han, Z., & Chai, J. (2016). Q&A: what are brassinosteroids and how do they act in plants? BMC biology, 14, 1-5. https://doi.org/10.1186/s12915-016-0340-8
- Tavallali, V. (2018). Vacuum infiltration of 24-epibrassinolide delays chlorophyll degradation and maintains quality of lime during cold storage. Acta Scientiarum Polonorum Hortorum Cultus, 17: 35-48. https://doi.org/10.24326/asphc.2018.1.4
- Tulipani, S., Mezzetti, B., Capocasa, F., Bompadre, S., Beekwilder, J., De Vos, C.R., Capanoglu, E., Bovy, A. & Battino, M. (2008). Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. Journal of Agricultural and Food chemistry, 56(3), 696-704. https://doi.org/10.1021/jf0719959
- Xiang, W., Wang, H.W., & Sun, D.W. (2021). Phytohormones in postharvest storage of fruit and vegetables: mechanisms and applications. Critical Reviews in Food Science and Nutrition, 61(18), 2969-2983. https://doi.org/10.1080/10408398.2020.1864280
- Yadav, R.K., Devi, L.L., & Singh, A.P. (2023). Brassinosteroids in plant growth and development. In Plant Hormones in Crop Improvement, pp. 185-203. Academic Press. https://doi.org/10.1016/B978-0-323-91886-2.00004-5
- Yang, N., Zhou, Y., Wang, Z., Zhang, Z., Xi, Z., & Wang, X. (2023). Emerging roles of brassinosteroids and light in anthocyanin biosynthesis and ripeness of climacteric and non-climacteric fruits. Critical Reviews in Food Science and Nutrition, 63(20), 4541-4553. https://doi.org/10.1080/10408398.2021.2004579
- Zhang, S.R., Li, C.Y., Xu, H.P., Liu, J.Q., & Ge, Y.H. (2023). Effect of postharvest brassinolide treatment on phenylpropanoid pathway and cell wall degradation in peach fruits. Food Science, 44(21), 175-179. https://doi.org/10.7506/spkx1002-6630-20230203-031
- Zaharah, S.S., Singh, Z., Symons, G.M., & Reid, J.B. (2012). Role of brassinosteroids, ethylene, abscisic acid, and indole-3- acetic acid in mango fruit ripening. Journal of Plant Growth Regulation, 31, 363–372. https://doi.org/10.1007/s00344-011-9245-5
- Zahedipour-Sheshglani, P., & Asghari, M. (2020). Impact of foliar spray with 24-epibrassinolide on yield, quality, ripening physiology and productivity of the strawberry. Scientia Horticulturae, 268, 109376. https://doi.org/10.1016/j.scienta.2020.109376
- Zhou, Y., He, W., Zheng, W., Tan, Q., Xie, Z., Zheng, C., & Hu, C. (2018). Fruit sugar and organic acid were significantly related to fruit Mg of six citrus cultivars. Food Chemistry, 259, 278–285. https://doi.org/10.1016/j.foodchem.2018.03.102
- Zhu, X., Chen, Y., Li, J., Ding, X., Xiao, S., Fan, S., Song, Z., Chen, W., & Li, X. (2021). Exogenous 2, 4-epibrassinolide treatment maintains the quality of carambola fruit associated with enhanced antioxidant capacity and alternative respiratory metabolism. Frontiers in Plant Science, 12, 678295. https://doi.org/10.3389/fpls.2021.678295
|