- Çolak, A. B. (2021). A novel comparative investigation of the effect of the number of neurons on the predictive performance of the artificial neural network: An experimental study on the thermal conductivity of ZrO2International Journal of Energy Research, 45(13), 18944-18956. https://doi.org/10.1002/er.6989
- FAOSTAT. (2021). Crops production data. http://wwwfaoorg/faostat/en/#data/QC. Accessed 20 March 2021
- Garcia-Allende, P. B., Mirapeix, J., Conde, O. M., Cobo, A., & Lopez-Higuera, J. M. (2009). Spectral processing technique based on feature selection and artificial neural networks for arc-welding quality monitoring. Ndt & E International, 42(1), 56-63. https://doi.org/10.1016/j.ndteint.2008.07.004
- Geler, Z., Kurbalija, V., Radovanović, M., & Ivanović, M. (2016). Comparison of different weighting schemes for the k NN classifier on time-series data. Knowledge and Information Systems, 48, 331-378. https://doi.org/10.1007/s10115-015-0881-0
- Giraudo, A., Calvini, R., Orlandi, G., Ulrici, A., Geobaldo, F., & Savorani, F. (2018). Development of an automated method for the identification of defective hazelnuts based on RGB image analysis and colourgrams. Food Control, 94, 233-240. https://doi.org/10.1016/j.foodcont.2018.07.018
- Gopi, A. P., Jyothi, R. N. S., Narayana, V. L., & Sandeep, K. S. (2023). Classification of tweets data based on polarity using improved RBF kernel of SVM. International Journal of Information Technology, 15(2), 965-980. https://doi.org/10.1007/s41870-019-00409-4
- Gou, J., Du, L., Zhang, Y., & Xiong, T. (2012). A new distance-weighted k-nearest neighbor classifier. Inf. Comput. Sci, 9(6), 1429-1436.
- Hallee, M. J., Napolitano, R. K., Reinhart, W. F., & Glisic, B. (2021). Crack detection in images of masonry using cnns. Sensors, 21(14), 4929. https://doi.org/10.3390/s21144929
- Heaton, J. (2008). Introduction to Neural Networks with Java. Heaton Research, Inc.
- Hosseinpour-Zarnaq, M., Omid, M., Taheri-Garavand, A., Nasiri, A., & Mahmoudi, A. (2022). Acoustic signal-based deep learning approach for smart sorting of pistachio nuts. Postharvest Biology and Technology, 185, 111778. https://doi.org/10.1016/j.postharvbio.2021.111778
- Ibba, P., Tronstad, C., Moscetti, R., Mimmo, T., Cantarella, G., Petti, L., ... & Lugli, P. (2021). Supervised binary classification methods for strawberry ripeness discrimination from bioimpedance data. Scientific Reports, 11(1), 11202. https://doi.org/10.1038/s41598-021-90471-5
- Jolliffe, I. T. (2002). Principal component analysis for special types of data(pp. 338-372). Springer New York. https://doi.org/10.1007/0-387-22440-8_13
- Kalkan, H., & Yardimci, Y. (2006, September). Classification of hazelnut kernels by impact acoustics. In 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing (pp. 325-330). IEEE. https://doi.org/10.1109/mlsp.2006.275569
- Komal, K., & Sonia, D. (2019). GLCM algorithm and SVM classification method for Orange fruit quality assessment. International Journal of Engineering Research & Technology (IJERT), 8(9), 697-703.
- Lashgari, M., Imanmehr, A., & Tavakoli, H. (2020). Fusion of acoustic sensing and deep learning techniques for apple mealiness detection. Journal of Food Science and Technology, 57, 2233-2240. https://doi.org/10.1007/s13197-020-04259-y
- Li, J., Lu, H., & Liu, X. (2014). Feature selection method based on SFFS and SVM for facial expression recognition. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE.
- Liu, Y., Starzyk, J. A., & Zhu, Z. (2007). Optimizing number of hidden neurons in neural networks. EeC, 1(1), 6.
- Lu, F., Wang, D., Wu, H., & Xie, W. (2016). A multi-classifier combination method using sffs algorithm for recognition of 19 human activities. In Computational Science and Its Applications–ICCSA 2016: 16th International Conference, Beijing, China, July 4-7, 2016, Proceedings, Part II 16 (pp. 519-529). Springer International Publishing. https://doi.org/10.1007/978-3-319-42108-7_40
- Luo, T., Zhao, J., Gu, Y., Zhang, S., Qiao, X., Tian, W., & Han, Y. (2023). Classification of weed seeds based on visual images and deep learning. Information Processing in Agriculture, 10(1), 40-51. https://doi.org/10.1016/j.inpa.2021.10.002
- Manekar, V., & Waghmare, K. (2014). Intrusion detection system using support vector machine (SVM) and particle swarm optimization (PSO). International Journal of Advanced Computer Research, 4(3), 808.
- Menesatti, P., Costa, C., Paglia, G., Pallottino, F., D'Andrea, S., Rimatori, V., & Aguzzi, J. (2008). Shape-based methodology for multivariate discrimination among Italian hazelnut cultivars. Biosystems Engineering, 101(4), 417-424. https://doi.org/10.1016/j.biosystemseng.2008.09.013
- Momeny, M., Jahanbakhshi, A., Jafarnezhad, K., & Zhang, Y. D. (2020). Accurate classification of cherry fruit using deep CNN based on hybrid pooling approach. Postharvest Biology and Technology, 166, 111204. https://doi.org/10.1016/j.postharvbio.2020.111204
- Omid, M. (2011). Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier. Expert Systems with Applications, 38(4), 4339-4347. https://doi.org/10.1016/j.eswa.2010.09.103
- Pourdarbani, R., Sabzi, S. (2022). Detection of Cucumber Fruits with Excessive Consumption of Nitrogen using Hyperspectral imaging (With Emphasis on Sustainable Agriculture). Journal of Environmental Sciences Studies, 7(4), 5485-5492.
- Pourreza, A., Pourreza, H., Abbaspour-Fard, M. H., & Sadrnia, H. (2012). Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Computers and Electronics in Agriculture, 83, 102-108. https://doi.org/10.1016/j.compag.2012.02.005
- Shojaeian, A., Bagherpour, H., Bagherpour, R., Parian, J. A., Fatehi, F., & Taghinezhad, E. (2023). The Potential Application of Innovative Methods in Neural Networks for Surface Crack Recognition of Unshelled Hazelnut. Journal of Food Processing and Preservation, 2023(1), 2177724. https://doi.org/10.1155/2023/2177724
- Singh, S., & Singh, N. P. (2019). Machine learning-based classification of good and rotten apple. In Recent Trends in Communication, Computing, and Electronics: Select Proceedings of IC3E 2018(pp. 377-386). Springer Singapore. https://doi.org/10.1007/978-981-13-2685-1_36
- Tan, S. S., Hoon, G. K., Yong, C. H., Kong, T. E., & Lin, C. S. (2005). Mapping search results into self-customized category hierarchy. In Intelligent Information Processing II: IFIP TC12/WG12. 3 International Conference on Intelligent Information Processing (IIP2004) October 21–23, 2004, Beijing, China 2 (pp. 311-323). Springer US. https://doi.org/10.1007/0-387-23152-8_41
- Taner, A., Öztekin, Y. B., & Duran, H. (2021). Performance analysis of deep learning CNN models for variety classification in hazelnut. Sustainability, 13(12), 6527. https://doi.org/10.3390/su13126527
- Tarakci, F., & Ozkan, I. A. (2021). Comparison of classification performance of kNN and WKNN algorithms. Selcuk University Journal of Engineering Sciences, 20(2), 32-37.
- Unay, D., Gosselin, B., & Debeir, O. (2006, January). Apple stem and calyx recognition by decision trees. In Proceedings of the 6th IASTED International Conference on Visualization, Imaging, and Image Processing, VIIP (pp. 549-552).
- Vidyarthi, S. K., Singh, S. K., Xiao, H. W., & Tiwari, R. (2021). Deep learnt grading of almond kernels. Journal of Food Process Engineering, 44(4), e13662. https://doi.org/10.1111/jfpe.13662
- Wang, W., Jung, J., McGorrin, R. J., & Zhao, Y. (2018). Investigation of the mechanisms and strategies for reducing shell cracks of hazelnut (Corylus avellana) in hot-air drying. Lwt, 98, 252-259. https://doi.org/10.1016/j.lwt.2018.08.053
- Way, T. W., Sahiner, B., Hadjiiski, L. M., & Chan, H. P. (2010). Effect of finite sample size on feature selection and classification: a simulation study. Medical Physics, 37(2), 907-920. https://doi.org/10.1118/1.3284974
- Yang, R., Wu, Z., Fang, W., Zhang, H., Wang, W., Fu, L., ... & Cui, Y. (2023). Detection of abnormal hydroponic lettuce leaves based on image processing and machine learning. Information Processing in Agriculture, 10(1), 1-10. https://doi.org/10.1016/j.inpa.2021.11.001
|