- Aghbashlo, M., Kianmehr, M. H., & Arabhosseini, A. (2008). Energy and exergy analyses of thin-layer drying of potato slices in a semi-industrial continuous band dryer. Drying Technology, 26(12), 1501-1508. https://doi.org/10.1080/07373930802426861
- Akpinar, E. K., Midilli, A., & Bicer, Y. (2005). Energy and exergy of potato drying process via cyclone type dryer. Energy Conversion and Management, 46(15-16), 2530-2552. https://doi.org/10.1016/j.enconman.2004.10.019
- Amini, G., Salehi, F., & Rasouli, M. (2021). Drying kinetics of basil seed mucilage in an infrared dryer: Application of GA-ANN and ANFIS for the prediction of drying time and moisture ratio. Journal of Food Processing and Preservation, 45(3), e15258. https://doi.org/10.1111/jfpp.15258
- Bai, J.-W., Xiao, H.-W., Ma, H.-L., & Zhou, C.-S. (2018). Artificial Neural Network Modeling of Drying Kinetics and Color Changes of Ginkgo Biloba Seeds during Microwave Drying Process. Journal of Food Quality, 2018, 3278595. https://doi.org/10.1155/2018/3278595
- Barreiro, P., Steinmetz, V., & Ruiz-Altisent, M. (1997). Neural bruise prediction models for fruit handling and machinery evaluation. Computers and Electronics in Agriculture, 18(2-3), 91-103. https://doi.org/10.1016/S0168-1699(97)00040-1
- Bhaskaran, P. E., Chennippan, M., & Subramaniam, T. (2020). Future prediction & estimation of faults occurrences in oil pipelines by using data clustering with time series forecasting. Journal of Loss Prevention in the Process Industries, 66, 104203. https://doi.org/10.1016/j.jlp.2020.104203
- Chatzilia, T., Kaderides, K., & Goula, A. M. (2023). Drying of peaches by a combination of convective and microwave methods. Journal of Food Process Engineering, 46(4), e14296. https://doi.org/10.1111/jfpe.14296
- Dhurve, P., Tarafdar, A., & Arora, V. K. (2021). Vibro-Fluidized Bed Drying of Pumpkin Seeds: Assessment of Mathematical and Artificial Neural Network Models for Drying Kinetics. Journal of Food Quality, 2021, 7739732. https://doi.org/10.1155/2021/7739732
- Dibagar, N., Kowalski, S. J., Chayjan, R. A., & Figiel, A. (2020). Accelerated convective drying of sunflower seeds by high-power ultrasound: Experimental assessment and optimization approach. Food and Bioproducts Processing, 123, 42-59. https://doi.org/10.1016/j.fbp.2020.03.002
- Dotto, G. L., Souza, T. B., Simoes, M. R., Morejon, C. F., & Moreira, M. F. P. (2017). Diffusive‐convective model considering the shrinkage applied for drying of pears (pyrus). Journal of Food Process Engineering, 40(4), e12503. https://doi.org/10.1111/jfpe.12503
- Gong, C., Liao, M., Zhang, H., Xu, Y., Miao, Y., & Jiao, S. (2020). Investigation of hot air–assisted radio frequency as a final-stage drying of pre-dried carrot cubes. Food and Bioprocess Technology, 13(3), 419-429. https://doi.org/10.1007/s11947-020-02560-0
- Guiné, R. P., Barroca, M. J., Gonçalves, F. J., Alves, M., Oliveira, S., & Mendes, M. (2015). Artificial neural network modelling of the antioxidant activity and phenolic compounds of bananas submitted to different drying treatments. Food Chemistry, 168, 454-459. https://doi.org/10.1016/j.foodchem.2014.07.022
- Guo, Y.-R., An, Y.-M., Jia, Y.-X., & Xu, J.-G. (2018). Effect of drying methods on chemical composition and biological activity of essential oil from cumin (Cuminum cyminum). Journal of Essential Oil Bearing Plants, 21(5), 1295-1302. https://doi.org/10.1080/0972060X.2018.1509873
- Habibi, S., & Nematollahi, M. (2019). Position and mass identification in nanotube mass sensor using neural networks. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(15), 5377-5387. https://doi.org/10.1177/0954406219846929
- Izli, N., & Polat, A. (2019). Freeze and convective drying of quince (Cydonia oblonga): Effects on drying kinetics and quality attributes. Heat and Mass Transfer, 55, 1317-1326. https://doi.org/10.1007/s00231-018-02667-6
- Kalathingal, M. S. H., Basak, S., & Mitra, J. (2020). Artificial neural network modeling and genetic algorithm optimization of process parameters in fluidized bed drying of green tea leaves. Journal of Food Process Engineering, 43(1), e13128. https://doi.org/10.1111/jfpe.13128
- Kaveh, M., Abbaspour Gilandeh, Y., Amiri Chayjan, R., & Mohammadigol, R. (2019). Comparison of Mathematical Modeling, Artificial Neural Networks and Fuzzy Logic for Predicting the Moisture Ratio of Garlic and Shallot in a Fluidized Bed Dryer. Journal of Agricultural Machinery, 9(1), 99-112. https://doi.org/10.22067/jam.v9i1.66231
- Kaveh, M., Chayjan, R. A., & Khezri, B. (2018). Modeling drying properties of pistachio nuts, squash and cantaloupe seeds under fixed and fluidized bed using data-driven models and artificial neural networks. International Journal of Food Engineering, 14(1), 10-23. https://doi.org/10.1515/ijfe-2017-0248
- Khalo ahmadi, A., Roustapour, O. R., & Borghaee, A. M. (2022). Design and Construction of a Cabinet Dryer for Food Waste and Evaluation of its Kinetics and Energy Consumption. Journal of Agricultural Machinery, 12(4), 467-480. https://doi.org/10.22067/jam.2021.69918.1037
- Khanlari, A., Güler, H. Ö., Tuncer, A. D., Şirin, C., Bilge, Y. C., Yılmaz, Y., & Güngör, A. (2020). Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application. Renewable energy, 145, 1677-1692. https://doi.org/10.1016/j.renene.2019.06.084
- Lingayat, A., VP, C., & VRK, R. (2021). Drying kinetics of tomato (Solanum lycopersicum) and Brinjal (Solanum melongena) using an indirect type solar dryer and performance parameters of dryer. Heat and Mass Transfer, 57, 853-872. https://doi.org/10.1007/s00231-020-02956-7
- Liu, Z.-L., Bai, J.-W., Wang, S.-X., Meng, J.-S., Wang, H., Yu, X.-L., ..., & Xiao, H.-W. (2019). Prediction of energy and exergy of mushroom slices drying in hot air impingement dryer by artificial neural network. Drying Technology. https://doi.org/10.1080/07373937.2019.1673328
- Matlab, S. (2016). Matlab. The MathWorks, Natick, MA.
- Meerasri, J., & Sothornvit, R. (2022). Artificial neural networks (ANNs) and multiple linear regression (MLR) for prediction of moisture content for coated pineapple cubes. Case Studies in Thermal Engineering, 33, 101942. https://doi.org/10.1016/j.csite.2022.101942
- Merah, O., Sayed-Ahmad, B., Talou, T., Saad, Z., Cerny, M., Grivot, S., ..., & Hijazi, A. (2020). Biochemical composition of cumin seeds, and biorefining study. Biomolecules, 10(7), 1054. https://doi.org/10.3390/biom10071054
- Miraei Ashtiani, S.-H., Rafiee, M., Mohebi Morad, M., Khojastehpour, M., Khani, M. R., Rohani, A., ..., & Martynenko, A. (2020). Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innovative Food Science & Emerging Technologies, 63, 102381. https://doi.org/10.1016/j.ifset.2020.102381
- Moghimi, M., Farzaneh, V., & Bakhshabadi, H. (2018). The effect of ultrasound pretreatment on some selected physicochemical properties of black cumin (Nigella Sativa). Nutrire, 43(1), 1-8. https://doi.org/10.1186/s41110-018-0057-4
- Moosavi, A. A., Nematollahi, M. A., & Rahimi, M. (2021). Predicting water sorptivity coefficient in calcareous soils using a wavelet–neural network hybrid modeling approach. Environmental Earth Sciences, 80, 1-19. https://doi.org/10.1007/s12665-021-09399-2
- Moradi, M., Ghasemi, J., & Azimi-Nejadian, H. (2021). Energy and Exergy Analysis of Drying Process of Lemon Verbena Leaves in a Solar Dryer. Journal of Agricultural Machinery, 11(2), 423-433. https://doi.org/10.22067/jam.v11i2.85801
- Namjoo, M., Dibagar, N., Golbakhshi, H., Figiel, A., & Masztalerz, K. (2024). RSM-Based Optimization Analysis for Cold Plasma and Ultrasound-Assisted Drying of Caraway Seed. Foods, 13(19), 3084. Retrieved from: https://www.mdpi.com/2304-8158/13/19/3084
- Namjoo, M., Golbakhshi, H., Kamandar, M. R., & Beigi, M. (2024). Multi-Objective Investigation and Optimization of Paddy Processing in a Hot Air Dryer. Periodica Polytechnica Chemical Engineering. https://doi.org/10.3311/PPch.24100
- Namjoo, M., Moradi, M., Dibagar, N., & Niakousari, M. (2022). Cold plasma pretreatment prior to ultrasound-assisted air drying of cumin seeds. Food and Bioprocess Technology, 15(9), 2065-2083. https://doi.org/10.1007/s11947-022-02863-8
- Namjoo, M., Moradi, M., Niakousari, M., & Karparvarfard, S. H. (2022). Ultrasound-assisted air drying of cumin seeds: modeling and optimization by response surface method. Heat and Mass Transfer. https://doi.org/10.1007/s00231-022-03306-y
- Nazghelichi, T., Kianmehr, M. H., & Aghbashlo, M. (2010). Thermodynamic analysis of fluidized bed drying of carrot cubes. Energy, 35(12), 4679-4684. https://doi.org/10.1016/j.energy.2010.08.028
- Nematollahi, M. A., Jamali, B., & Hosseini, M. (2020). Fluid velocity and mass ratio identification of piezoelectric nanotube conveying fluid using inverse analysis. Acta Mechanica, 231(2), 683-700. https://doi.org/10.1007/s00707-019-02633-5
- Nematollahi, M. A., & Mousavi Khaneghah, A. (2019). Neural network prediction of friction coefficients of rosemary leaves. Journal of Food Process Engineering, 42(6), e13211. https://doi.org/10.1111/jfpe.13211
- Onwude, D. I., Hashim, N., Abdan, K., Janius, R., & Chen, G. (2018). Investigating the influence of novel drying methods on sweet potato (Ipomoea batatas): Kinetics, energy consumption, color, and microstructure. Journal of Food Process Engineering, 41(4), e12686. https://doi.org/10.1111/jfpe.12686
- Osloob, F., Moradi, M., & Niakousari, M. (2023). Cold Plasma: A Novel Pretreatment Method for Drying Canola Seeds: Kinetics Study and Superposition Modeling. Journal of Agricultural Machinery, 13(1), 41-53. https://doi.org/10.22067/jam.2022.75630.1096
- Özkan Karabacak, A. (2019). Effects of different drying methods on drying characteristics, colour and in-vitro bioaccessibility of phenolics and antioxidant capacity of blackthorn pestil (leather). Heat and Mass Transfer, 55, 2739-2750. https://doi.org/10.1007/s00231-019-02729-w
- Potisate, Y., Phoungchandang, S., & Kerr, W. L. (2014). The effects of predrying treatments and different drying methods on phytochemical compound retention and drying characteristics of Moringa leaves (Moringa oleifera). Drying Technology, 32(16), 1970-1985. https://doi.org/10.1080/07373937.2014.945223
- Rezaei, S., Behroozi-Khazaei, N., & Darvishi, H. (2021). Modeling of Potato Slice Drying Process in a Microwave Dryer using Artificial Neural Network and Machine Vision. Journal of Agricultural Machinery, 11(2), 263-275. https://doi.org/10.22067/jam.v11i2.78709
- Saeidirad, M. H., Rohani, A., & Zarifneshat, S. (2013). Predictions of viscoelastic behavior of pomegranate using artificial neural network and Maxwell model. Computers and Electronics in Agriculture, 98, 1-7. https://doi.org/10.1016/j.compag.2013.07.011
- Safavi, A. A., & Romagnoli, J. A. (1997). Application of wavelet-based neural networks to the modelling and optimisation of an experimental distillation column. Engineering Applications of Artificial Intelligence, 10(3), 301-313. https://doi.org/10.1016/S0952-1976(97)00009-2
- Saiedirad, M., & Mirsalehi, M. (2010). Prediction of mechanical properties of cumin seed using artificial neural networks. Journal of Texture studies, 41(1), 34-48. https://doi.org/10.1111/j.2042-4588.2009.00119.x
- Saiedirad, M., Tabatabaeefar, A., Borghei, A., Mirsalehi, M., Badii, F., & Varnamkhasti, M. G. (2008). Effects of moisture content, seed size, loading rate and seed orientation on force and energy required for fracturing cumin seed (Cuminum cyminum) under quasi-static loading. Journal of food engineering, 86(4), 565-572. https://doi.org/10.1016/j.jfoodeng.2007.11.048
- Shashikanthalu, S. P., Ramireddy, L., & Radhakrishnan, M. (2020). Stimulation of the germination and seedling growth of Cuminum cyminum L. seeds by cold plasma. Journal of Applied Research on Medicinal and Aromatic Plants, 18, 100259. https://doi.org/10.1016/j.jarmap.2020.100259
- Sun, Q., Zhang, M., & Mujumdar, A. S. (2019). Recent developments of artificial intelligence in drying of fresh food: A review. Critical Reviews in Food Science and Nutrition, 59(14), 2258-2275. https://doi.org/10.1080/10408398.2018.1487171
- Tabibian, S. A., Labbafi, M., Askari, G. H., Rezaeinezhad, A. R., & Ghomi, H. (2020). Effect of gliding arc discharge plasma pretreatment on drying kinetic, energy consumption and physico-chemical properties of saffron. Journal of food engineering, 270, 109-117. https://doi.org/10.1016/j.jfoodeng.2019.109766
- Wang, C., Tian, S., & An, X. (2022). The effects of drying parameters on drying characteristics, colorimetric differences, antioxidant components of sliced chinese jujube. Heat and Mass Transfer, 58(9), 1561-1571. https://doi.org/10.1007/s00231-022-03202-5
- Wang, X., Zhong, J., Han, M., Li, F., Fan, X., & Liu, Y. (2023). Drying characteristics and moisture migration of ultrasound enhanced heat pump drying on carrot. Heat and Mass Transfer, 1-12. https://doi.org/10.1007/s00231-023-03564-1
- Yogendrasasidhar, D., & Setty, Y. P. (2018). Drying kinetics, exergy and energy analyses of Kodo millet grains and Fenugreek seeds using wall heated fluidized bed dryer. Energy, 151, 799-811. https://doi.org/10.1016/j.energy.2018.03.104
- Zakeri, V., Naghavi, V., & Safavi, A. A. (2009). Developing real-time wave-net models for non-linear time-varying experimental processes. Computers & Chemical Engineering, 33(8), 1379-1385. https://doi.org/10.1016/j.compchemeng.2009.01.017
- Zhou, Y.-H., Vidyarthi, S. K., Zhong, C.-S., Zheng, Z.-A., An, Y., Wang, J., ..., & Xiao, H.-W. (2020). Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. LWT, 134, 110173. https://doi.org/10.1016/j.lwt.2020.110173
|