[1] Agri-Mag. Cactus, Cochineal, and Biological Con-trol,
https://www.agri-mag.com/2017/06/22/ cactus-cochenille-et-lutte-biologique/#:~:text=Le%20cactus% 20est%20pr%20sent%20dans,%C3%A9cosyst%C3%A8mes%20%C3%A0%
20travers%20le%20monde.
[2] Bani-Yaghoub, M., Gautam, R., Shuai, Z., van den Driessche, P., and Ivanek, R. Reproduction numbers for infections with free-living pathogens growing in the environment, J. Biol. Dyn. 6 (2) (2012) 923–940.
[3] Birkhoff, G., and Rota, G.C. Ordinary differential equations, 4th ed., John Wiley and Sons, 1989.
[4] Chowell, G., Simonsen, L., Viboud, C., and Kuang, Y. Is west Africa approaching a catastrophic phase or is the 2014 Ebola epidemic slow-ing down? Different models yield different answers for Liberia, PLoS Currents, 6 (2014) ecurrents-outbreaks.
[5] El Baz, O., Ait Ichou, M., Laarabi, H., and Rachik, M. Stability analysis of a fractional model for the transmission of the cochineal, Math. Model. Comput. 10 (2) (2023) 379–386.
[6] Farkas, M., and Weinberger, H.F. Optimal control theory in mathemat-ical biology, Springer, 1998.
[7] Fleming, W.H., and Rishel, R.W. Deterministic and stochastic optimal control, Springer, 1975.
[8] Gibernau, M. Introduction to Cochineal and Its Role in Global Trade, J. Econ. Bot. 28 (3) (2019) 101–105.
[9] Aït Ichou, M., and Laarabi, H. Application of SIR model to study the spread of cochineal on cacti, Math. Biosci., 2021.
[10] Khaleque, A., and Sen, P. An empirical analysis of the Ebola outbreak in west Africa, Sci. Rep., 7 (2017) 42594.
[11] LaSalle, J.P. The stability of dynamical systems, Regional Conference Series in Applied Mathematics, 25, SIAM, 1976.
[12] Lotka, A.J. Elements of physical biology, Williams and Wilkins, 1925.
[13] De Jesus Mendez-Gallegos, S., Tiberi, R. and Panzavolta, T. Carmine Cochineal *Dactylopius Coccus* Costa (Rhynchota: Dactylopiidae): Sig-nificance, Production and Use, Adv. Hortic. Sci. 17 (3) (2003) 165–171.
[14] Pell, B., Kuang, Y., Viboud, C., and Chowell, G. Using phenomenological models for forecasting the 2015 Ebola challenge, Epidemics, 22 (2018) 62–70.
[15] Pontryagin, L. S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F. The mathematical theory of optimal processes, Wi-ley, 1962.
[16] Rachik, M., and Laarabi, H. Mathematical modeling of pest dynamics in agricultural systems: A review, Int. J. Appl. Math. Comput. Sci. 2020.
[17] Verhulst, P.F. Notice on the law of population growth, Corresp Math. Phys. 10 (1838) 113–126.
[18] van den Driessche, P., and Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002) 29–48.