- Adler, N., Friedman, L., & Sinuany-Stern, Z. (2002). Review of ranking methods in the data envelopment analysis context. In European Journal of Operational Research, 140, 249-265. North-Holland. https://doi.org/10.1016/S0377-2217(02)00068-1
- Ahamed, J. U., Saidur, R., Masjuki, H. H., Mekhilef, S., Ali, M. B., & Furqon, M. H. (2011). An application of energy and exergy analysis in agricultural sector of Malaysia. Energy Policy, 39(12), 7922-7929. https://doi.org/10.1016/j.enpol.2011.09.045
- Al-Ghandoor, A., & Jaber, J. O. (2009). Analysis of energy and exergy utilisation of Jordan’s agricultural sector. International Journal of Exergy, 6(4), 491-508. https://doi.org/10.1504/IJEX.2009.026674
- Alam, M. S., Alam, M. R., & Islam, K. K. (2005). Energy Flow in Agriculture: Bangladesh. American Journal of Environmental Sciences, 1(3), 213. https://doi.org/10.3844/ajessp.2005.213.220
- Amiri, Z., Asgharipour, M., Campbell, D. E., & Armin, M. (2020). Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran. Agricultural Systems, 180, 102789. https://doi.org/10.1016/j.agsy.2020.102789
- Anonymous. (2018). Energy Balance Sheet of Iran. Tehran: Iran Ministry of Energy Deputy of Electricity and Energy Affairs.
- Apazhev, A. K., Fiapshev, A. G., Shekikhachev, I. A., Khazhmetov, L. M., Khazhmetova, A. L., & Ashabokov, K. K. (2019). Energy efficiency of improvement of agriculture optimization technology and machine complex optimization. In E3S Web of Conferences (Vol. 124, p. 05054). EDP Sciences. https://doi.org/10.1051/e3sconf/201912405054
- Arts, W., Ruijten, D., Aelst, K. Van, Trullemans, L., & Sels, B. (2021). The RCF biorefinery: Building on a chemical platform from lignin. Advances in Inorganic Chemistry, 77, 241-297. https://doi.org/10.1016/BS.ADIOCH.2021.02.006
- Ashby, M. F. (2013). Eco-audits and eco-audit tools. Materials and the Environment, 175-191. https://doi.org/10.1016/B978-0-12-385971-6.00007-5
- Banaeian, N., & Zangeneh, M. (2011). Study on energy efficiency in corn production of Iran. Energy, 36(8), 5394-5402.
- Baumann, H., & Tillman, A. M. (2004). The Hitch Hiker’s Guide to LCA. An orientation in life cycle assessment methodology and application. Studentlitteratur Lund. Studentlitteratur AB.
- Bechmann, M., & Stålnacke, P. (2005). Effect of policy-induced measures on suspended sediments and total phosphorus concentrations from three Norwegian agricultural catchments. Science of the Total Environment, 344(1-3 SPEC. ISS.), 129-142. https://doi.org/10.1016/j.scitotenv.2005.02.013
- Beheshti Tabar, I., Keyhani, A., & Rafiee, S. (2010, February). Energy balance in Iran’s agronomy (1990-2006). Renewable and Sustainable Energy Reviews. Pergamon. https://doi.org/10.1016/j.rser.2009.10.024
- Berthiaume, R., Bouchard, C., & Rosen., M. A. (2001). Exergetic evaluation of the renewability of a biofuel. Exergy, An International Journal, 1(4), 256-268.
- Bhunia, S., Karmakar, S., Bhattacharjee, S., Roy, K., Kanthal, S., Pramanick, M., …, & Mandal, B. (2021). Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices. Energy, 236, 121499. https://doi.org/10.1016/j.energy.2021.121499
- Bösch, M. E., Hellweg, S., Frischknecht, M. A. J., & Huijbregts, R. (2007). Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. The International Journal of Life Cycle Assessment, 12(181).
- Brentrup, F., Küsters, J., Lammel, J., Barraclough, P., & Kuhlmann, H. (2004). Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy, 20(3), 265-279. https://doi.org/10.1016/S1161-0301(03)00039-X
- Cao, C. (2017). Sustainability and life assessment of high strength natural fibre composites in construction. Advanced High Strength Natural Fibre Composites in Construction, 529-544. https://doi.org/10.1016/B978-0-08-100411-1.00021-2
- Chauhan, N. S., Mohapatra, P. K. K. J., & Pandey, K. P. (2006). Improving energy productivity in paddy production through benchmarking—An application of data envelopment analysis. Energy Conversion and Management, 47(9-10), 1063-1085. https://doi.org/10.1016/j.enconman.2005.07.004
- Dincer, I., & Cengel, Y. A. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3(3), 116-149. https://doi.org/10.3390/e3030116
- Erdal, G., Esengün, K., Erdal, H., & Gündüz, O. (2007). Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy, 32(1), 35-41. https://doi.org/10.1016/j.energy.2006.01.007
- EsmaeilpourTroujeni, M., Rohani, A., & Khojastehpour, M. (2021). Optimization of rapeseed production using exergy analysis methodology. Sustainable Energy Technologies and Assessments, 43, 100959. https://doi.org/10.1016/j.seta.2020.100959
- Fallahpour, F., Aminghafouri, A., Ghalegolab Behbahani, A., & Bannayan, M. (2012). The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environment, Development and Sustainability, 14(6), 979-992. https://doi.org/10.1007/s10668-012-9367-3
- Filipovic, D., Kosutic, S., Gospodaric, Z., Zimmer, R., & Banaj, D. (2006). The possibilities of fuel savings and the reduction of CO2 emissions in the soil tillage in Croatia. Agriculture, Ecosystems and Environment, 115(1-4), 290-294. https://doi.org/10.1016/j.agee.2005.12.013
- Finkbeiner, M., Inaba, A., Tan, R. B. H., Christiansen, K., & Klüppel, H. J. (2006, January). The new international standards for life cycle assessment: ISO 14040 and ISO 14044. International Journal of Life Cycle Assessment. Springer. https://doi.org/10.1065/lca2006.02.002
- Gezer, I., Acaroǧlu, M., & Haciseferoǧullari, H. (2003). Use of energy and labour in apricot agriculture in Turkey. Biomass and Bioenergy, 24(3), 215-219. https://doi.org/10.1016/S0961-9534(02)00116-2
- Gurdeep Singh, P., Sodhi, G. P. S., & Tiwari, D. (2021). Energy auditing and data envelopment analysis (DEA) based optimization for increased energy use efficiency in wheat cultivation (Triticum aestium) in north-western India. Sustainable Energy Technologies and Assessments, 47, 101453. https://doi.org/10.1016/j.seta.2021.101453
- Hai, Q., Zhiliang, D., Xinshang, Y., Li, Y., Zhao, Y., & Xiaotian, S. (2023). Extended exergy accounting for assessing the sustainability of agriculture: A case study of Hebei Province, China. Ecological Indicators, 150, 110240.
- Hatirli, S. A., Ozkan, B., & Fert, C. (2005, December). An econometric analysis of energy input-output in Turkish agriculture. Renewable and Sustainable Energy Reviews. Pergamon. https://doi.org/10.1016/j.rser.2004.07.001
- Hatirli, S. A., Ozkan, B., & Fert, C. (2006). Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy, 31(4), 427-438.
- Hernandez, P., Oregi, X., Longo, S., & Cellura, M. (2019). Life-Cycle Assessment of Buildings. Handbook of Energy Efficiency in Buildings: A Life Cycle Approach, 207-261. https://doi.org/10.1016/B978-0-12-812817-6.00010-3
- Houshyar, E., & Grundmann, P. (2017). Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran. Energy, 122, 11-24. https://doi.org/10.1016/j.energy.2017.01.069
- IPCC. (2006). IPCC guidelines for national greenhouse gas inventories. Hayama, Japan.: Institute for Global Environmental Strategies.
- Jacob-Lopes, E., Zepka, L. Q., & Deprá, M. C. (2021). Methods of evaluation of the environmental impact on the life cycle. In Sustainability Metrics and Indicators of Environmental Impact (pp. 29–70). Elsevier. https://doi.org/10.1016/b978-0-12-823411-2.00003-7
- Jalalvand, M., Bakhoda, H., & Almassi, M. (2014). Wind Energy Potential Assessment for Electric Pumps of Agriculture in Broujerd. Journal of Agricultural Machinery, 4(2), 368-377. (in Persian). https://doi.org/10.22067/jam.v4i2.34821
- Jat, H. S., Jat, R. D., Nanwal, R. K., Lohan, S. K., Yadav, A. K., Poonia, T., …, & Jat, M. L. (2020). Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India. Renewable Energy, 155, 1372-1382. https://doi.org/10.1016/j.renene.2020.04.046
- Juárez-Hernández, S., Usón, S., & Pardo, C. S. (2019). Assessing maize production systems in Mexico from an energy, exergy, and greenhouse-gas emissions perspective. Energy, 170, 199-211. https://doi.org/10.1016/j.energy.2018.12.161
- Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K. wing. (2019). Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production. Energy, 181, 1298-1320. https://doi.org/10.1016/j.energy.2019.06.002
- Khan, S., Khan, M. A., Hanjra, M. A., & Mu, J. (2009). Pathways to reduce the environmental footprints of water and energy inputs in food production. Food Policy, 34(2), 141-149.
- KhojastehpourTroujeni, M., Esmailpour, M., Vahedi, A., & Emadi, B. (2018). Sensitivity analysis of energy inputs and economic evaluation of pomegranate production in Iran. Information Processing in Agriculture, 5(1), 114-123. https://doi.org/10.1016/j.inpa.2017.10.002
- Kitani, O. (1999). Energy and biomass engineering, CIGR handbook of agricultural engineering. American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.36411
- Komleh Pishgar, S. H., Keyhani, A., Rafiee, S., & Sefeedpary, P. (2011). Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy, 36(5), 3335-3341.
- Kylili, A., Seduikyte, L., & Fokaides, P. A. (2018). Life Cycle Analysis of Polyurethane Foam Wastes. Recycling of Polyurethane Foams, 97-113. https://doi.org/10.1016/B978-0-323-51133-9.00009-7
- Leiva, F. R., & Morris, J. (2001). Mechanization and sustainability in arable farming in England. Journal of Agricultural and Engineering Research, 79(1), 81-90. https://doi.org/10.1006/jaer.2000.0686
- Lovarelli, D., Bacenetti, J., & Fiala, M. (2017). Effect of local conditions and machinery characteristics on the environmental impacts of primary soil tillage. Journal of Cleaner Production, 140, 479-491. https://doi.org/10.1016/j.jclepro.2016.02.011
- Malana, N. M., & Malano, H. M. (2006). Benchmarking productive efficiency of selected wheat areas in Pakistan and India using data envelopment analysis. Irrigation and Drainage, 55(4), 383-394. https://doi.org/10.1002/ird.264
- Mani, I., Kumar, P., Panwar, J. S., & Kant, K. (2007). Variation in energy consumption in production of wheat-maize with varying altitudes in hilly regions of Himachal Pradesh, India. Energy, 32(12), 2336-2339. https://doi.org/10.1016/j.energy.2007.07.004
- Michalakakis, C., Fouillou, J., Lupton, R. C., Gonzalez Hernandez, A., & Cullen, J. M. (2021). Calculating the chemical exergy of materials. Journal of Industrial Ecology, 25(2), 274-287. https://doi.org/10.1111/jiec.13120
- Milà I Canals, L., Burnip, G. M., & Cowell, S. J. (2006). Evaluation of the environmental impacts of apple production using Life Cycle Assessment (LCA): Case study in New Zealand. Agriculture, Ecosystems and Environment, 114(2-4), 226-238. https://doi.org/10.1016/j.agee.2005.10.023
- Mobtaker, H. G., Keyhani, A., Mohammadi, A., Rafiee, S., & Akram, A. (2010). Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems and Environment, 137(3-4), 367-372. https://doi.org/10.1016/j.agee.2010.03.011
- Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Knudsen, M. T., Keyhani, A., …, & Hermansen, J. E. (2013). Potential greenhouse gas emission reductions in soybean farming: A combined use of Life Cycle Assessment and Data Envelopment Analysis. Journal of Cleaner Production, 54, 89-100. https://doi.org/10.1016/j.jclepro.2013.05.019
- Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S. H., & Nonhebel, S. (2014, February). Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews. Pergamon. https://doi.org/10.1016/j.rser.2013.11.012
- Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011a). Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy, 36(5), 2765-2772. https://doi.org/10.1016/j.energy.2011.02.016
- Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011b). Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. Applied Energy, 88(11), 3765-3772. https://doi.org/10.1016/j.apenergy.2011.04.021
- Nemecek, T., Dubois, D., Huguenin-Elie, O., & Gaillard, G. (2011). Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agricultural Systems, 104(3), 217-232. https://doi.org/10.1016/j.agsy.2010.10.002
- Nikkhah, A., Khojastehpour, M., Emadi, B., Taheri-Rad, A., & Khorramdel, S. (2015). Environmental impacts of peanut production system using life cycle assessment methodology. Journal of Cleaner Production, 92, 84-90. https://doi.org/10.1016/j.jclepro.2014.12.048
- Ordikhani, H., Parashkoohi, M. G., Zamani, D. M., & Ghahderijani, M. (2021). Energy-environmental life cycle assessment and cumulative exergy demand analysis for horticultural crops (Case study: Qazvin province). Energy Reports, 7, 2899-2915. https://doi.org/10.1016/j.egyr.2021.05.022
- Papapetrou, M., & Kosmadakis, G. (2022). Resource, environmental, and economic aspects of SGHE. Salinity Gradient Heat Engines, 319-353. https://doi.org/10.1016/B978-0-08-102847-6.00006-1
- Parihar, C. M., Jat, S. L., Singh, A. K., Kumar, B., Rathore, N. S., Jat, M. L., …, & Kuri, B. R. (2018). Energy auditing of long-term conservation agriculture based irrigated intensive maize systems in semi-arid tropics of India. Energy, 142, 289-302. https://doi.org/10.1016/j.energy.2017.10.015
- Parvaresh Rizi, A., & Ashrafzadeh, A. (2018). Techno-economic Analysis of Solar Irrigation: Comparison with Conventional Energy Sources for Irrigation. Journal of Energy Planning And Policy Research, 4(2), 201-228.
- Pelvan, E., & Özilgen, M. (2017). Assessment of energy and exergy efficiencies and renewability of black tea, instant tea and ice tea production and waste valorization processes. Sustainable Production and Consumption, 12, 59-77. https://doi.org/10.1016/j.spc.2017.05.003
- Pishgar-Komleh, S. H., Keyhani, A., Mostofi-Sarkari, M. R., & Jafari, A. (2012). Energy and economic analysis of different seed corn harvesting systems in Iran. Energy, 43(1), 469-476. https://doi.org/10.1016/j.energy.2012.03.040
- Powar, R. V., Mehetre, S. A., Patil, P. R., Patil, R. V., Wagavekar, V. A., Turkewadkar, S. G., & Patil, S. B. (2020). Study on Energy Use Efficiency for Sugarcane Crop Production Using the Data Envelopment Analysis (DEA) Technique. Journal of Biosystems Engineering, 45(4), 291-309. https://doi.org/10.1007/s42853-020-00070-x
- Prasad, S., Singh, A., Korres, N. E., Rathore, D., Sevda, S., & Pant, D. (2020, May). Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresource Technology. Elsevier. https://doi.org/10.1016/j.biortech.2020.122964
- Ptasinski, K. J. (2016). Efficiency of Biomass Energy: An Exergy Approach to Biofuels, Power, and Biorefineries. Hoboken, NJ: Wiley. https://doi.org/10.1002/9781119118169
- Rahman, S., & Hasan, M. K. (2014). Energy productivity and efficiency of wheat farming in Bangladesh. Energy, 66, 107-114. https://doi.org/10.1016/j.energy.2013.12.070
- Royan, M., Khojastehpour, M., Emadi, B., & Mobtaker, H. G. (2012). Investigation of energy inputs for peach production using sensitivity analysis in Iran. In Energy Conversion and Management 64, 441-446. Pergamon. https://doi.org/10.1016/j.enconman.2012.07.002
- Sartor, K., & Dewallef, P. (2017). Exergy analysis applied to performance of buildings in Europe. Energy and Buildings, 148, 348-354. https://doi.org/10.1016/j.enbuild.2017.05.026
- Shah, S. M., Liu, G., Yang, Q., Casazza, M., Agostinho, F., & Giannetti, B. F. (2021). Sustainability assessment of agriculture production systems in Pakistan: A provincial-scale energy-based evaluation. Ecological Modelling, 455, 109654. https://doi.org/10.1016/j.ecolmodel.2021.109654
- Shahhoseini, H. R., Ramroudi, M., Kazemi, H., & Amiri, Z. (2021). Sustainability assessment of autumn and spring potato production systems using extended exergy analysis (EEA). Energy, Ecology and Environment, 1-12. https://doi.org/10.1007/s40974-021-00222-5
- Shojaei, M., & Akhavan, S. (2020). Economic assessment of photovoltaic (PV) water pumping system in drip-irrigated fields. Iranian Water Researches Journal, 14(1), 19-28.
- Singh, A., Pant, D., Korres, N. E., Nizami, A. S., Prasad, S., & Murphy, J. D. (2010). Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Bioresource Technology, 101(13), 5003-5012. https://doi.org/10.1016/j.biortech.2009.11.062
- Singh, Gursahib, Singh, S., & Singh, J. (2004). Optimization of energy inputs for wheat crop in Punjab. Energy Conversion and Management, 45(3), 453-465. https://doi.org/10.1016/S0196-8904(03)00155-9
- Singh, P., Singh, G., & Sodhi, G. P. S. (2019). Applying DEA optimization approach for energy auditing in wheat cultivation under rice-wheat and cotton-wheat cropping systems in north-western India. Energy, 181, 18-28. https://doi.org/10.1016/j.energy.2019.05.147
- Soltanali, H., Nikkhah, A., & Rohani, A. (2017). Energy audit of Iranian kiwifruit production using intelligent systems. Energy, 139, 646-654. https://doi.org/10.1016/j.energy.2017.08.010
- Su, X., Shao, X., Tian, S., Li, H., & Huang, Y. (2021). Life cycle assessment comparison of three typical energy utilization ways for corn stover in China. Biomass and Bioenergy, 152, 106199.
- Thankappan, S., Midmore, P., & Jenkins, T. (2006). Conserving energy in smallholder agriculture: A multi-objective programming case-study of northwest India. Ecological Economics, 56(2), 190-208. https://doi.org/10.1016/j.ecolecon.2005.01.017
- Tzilivakis, J., Warner, D. J., May, M., Lewis, K. A., & Jaggard, K. (2005). An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems, 85(2), 101-119. https://doi.org/10.1016/j.agsy.2004.07.015
- Vlontzos, G., Niavis, S., & Manos, B. (2014, December). A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries. Renewable and Sustainable Energy Reviews. Pergamon. https://doi.org/10.1016/j.rser.2014.07.153
- William Cochran. (1991). Sampling Techniques (3rd Editio). New York: John Wiley and Sons.
- Yildizhan, H. (2018). Energy, exergy utilization and CO2 emission of strawberry production in greenhouse and open field. Energy, 143, 417-423. https://doi.org/10.1016/j.energy.2017.10.139
- Yildizhan, H., & Taki, M. (2018). Assessment of tomato production process by cumulative exergy consumption approach in greenhouse and open field conditions: Case study of Turkey. Energy, 156, 401-408. https://doi.org/10.1016/j.energy.2018.05.117
- Yildizhan, H., & Taki, M. (2019). Sustainable management and conservation of resources for different wheat production processes; cumulative exergy consumption approach. International Journal of Exergy, 28(4), 404-422. https://doi.org/10.1504/IJEX.2019.099295
- Yilmaz, I., Akcaoz, H., & Ozkan, B. (2005). An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy, 30(2), 145-155. https://doi.org/10.1016/j.renene.2004.06.001
- Yousefi, M., Khoramivafa, M., & Mondani, F. (2014). Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmospheric Environment, 92, 501-505. https://doi.org/10.1016/j.atmosenv.2014.04.050
- Yousefi, M., Mahdavi, A., & Mahmud, D. K. (2014). Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Science of the Total Environment, 493, 330-335.
- Yuan, S., Peng, S., Wang, D., & Man, J. (2018). Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China. Energy, 160, 184-191. https://doi.org/10.1016/j.energy.2018.07.006
|