- Defraeye, T., Lehmann, V., Gross, D., Holat, C., Herremans, E., Verboven, P., Verlinden, B. E., & Nicolai, B. M. (2013). Application of MRI for tissue characterisation of ‘Braeburn’ apple. Postharvest Biology and Technology, 75, 96-105. https://doi.org/10.1016/j.postharvbio.2012.08.009
- Diels, E., Dael, M. V., Keresztes, J., Vanmaercke, S., Verboven, P., Nicolai, B., Saeys, W., Ramon, H., & Smeets, B. (2017). Assessment of bruise volumes in apples using X-ray computed tomography. Postharvest Biology and Technology, 128, 24-32. https://doi.org/10.1016/j.postharvbio.2017.01.013
- Galed, G., Fernández-Valle, M. E., Martinez, A., & Heras, A. (2004). Application of MRI to monitor the process of ripening and decay in citrus treated with chitosan solutions. Magnetic Resonance Imaging, 22, 127-137. https://doi.org/10.1016/j.mri.2003.05.006
- Gonzalez, J. J., Valle, R. C., Bobroff, S., Biasi, W. V., Mitcham, E. J., & McCarthy, M. J. (2001). Detection and monitoring of internal browning development in ‘Fuji’ apples using MRI. Postharvest Biology and Technology, 22, 179-188. https://doi.org/10.1016/S0925-5214(00)00183-6
- Haishi, T., Koizumi, H., Arai, T., Koizumi, M., & Kano, H. (2011). Rapid detection of infestation of apple fruits by the peach fruit moth, Carposina sasakii Matsumura, larvae using a 0.2-T dedicated magnetic resonance imaging apparatus. Applied Magnetic Resonance, 41, 1-18. https://doi.org/10.1007/s00723-011-0222-8
- Hernández-Sánchez, N., Hills, B. P., Barreiro, P., & Marigheto, N. (2007). An NMR study on internal browning in pears. Postharvest Biology and Technology, 44, 260-270. https://doi.org/10.1016/j.postharvbio.2007.01.002
- Herremans, E., Melado-Herreros, A., Defraeye, T., Verlinden, B., Hertog, M., Verboven, P., Val, J., Fernández-Valle, M. E., Bongaers, E., Estrade, P., Wevers, M., Barreiro, P., & Nicolai, B. M. (2014). Comparison of X-ray CT and MRI of watercore disorder of different apple cultivars. Postharvest Biology and Technology, 87, 42-50. https://doi.org/10.1016/j.postharvbio.2013.08.008
- Khodabakhshian, R., & Emadi, B. (2017). Application of Vis/SNIR hyperspectral imaging in ripeness classification of pear. International Journal of Food Properties, 20(sup3). https://doi.org/10.1080/10942912.2017.1354022
- Khodabakhshian, R., Emadi, B., Khojastehpour, M., & Golzarian, M. (2019). Instrumental measurement of pomegranate texture during four maturity stages. Journal of Texture Studies, 50. https://doi.org/10.1111/jtxs.12406
- Khodabakhshian, R. (2022). Raman Spectroscopy for Fresh Fruits and Vegetables. In P. B. Pathare & M. S. Rahman (Eds.), Nondestructive Quality Assessment Techniques for Fresh Fruits and Vegetables (pp. 193–214). https://doi.org/10.1007/978-981-19-5422-1_8
- Lan, W., Jaillais, B., Chen, S., Renard, M. G. C., Leca, A., & Bureau, S. (2022). Fruit variability impacts puree quality: Assessment on individually processed apples using the visible and near infrared spectroscopy. Food Chemistry, 390, 133088. https://doi.org/10.1016/j.foodchem.2022.133088
- Leiva-Valenzuela, G. A., & Aguilera, J. M. (2013). Automatic detection of orientation and diseases in blueberries using image analysis to improve their postharvest storage quality. Food Control, 33(1), 166-173. https://doi.org/10.1016/j.foodcont.2013.02.025
- Li, M., Li, B., & Zhang, W. J. (2018). Rapid and non-invasive detection and imaging of the hydrocolloid-injected prawns with low-field NMR and MRI. Food Chemistry, 242, 16-21. https://doi.org/10.1016/j.foodchem.2017.08.086
- Lu, L., Hu, Z., Hu, X., Li, D., & Tian, S. (2022). Electronic tongue and electronic nose for food quality and safety. Food Research International, 162, 112214. https://doi.org/10.1016/j.foodres.2022.112214
- Mazhar, M., Joyce, D., Cowin, G., Brereton, I., Hofman, P., Collins, R., & Gupta, M. (2015). Non-destructive 1H-MRI assessment of flesh bruising in avocado (Persea americana) cv. Hass. Postharvest Biology and Technology, 100, 33-40. https://doi.org/10.1016/j.postharvbio.2014.09.006
- McRobbie, D. W., Moore, E. A., Graves, M. J., & Prince, M. R. (2009). MRI from picture to proton. Cambridge University Press. https://doi.org/10.1017/CBO9780511545405
- Mierzwa, D., Szadzinska, J., Gapinski, B., Radziejewska-Kubzdela, E., & Biegańska-Marecik, R. (2022). Assessment of ultrasound-assisted vacuum impregnation as a method for modifying cranberries’ quality. Ultrasonics Sonochemistry, 89, 106117. https://doi.org/10.1016/j.ultsonch.2022.106117
- Noshad, F., Asghari, A., Azadbakht, M., & Ghasemnezhad, A. (2020). Comparison of different Magnetic Resonance Imaging (MRI) protocols from Quince fruit. Iranian Journal of Biosystem Engineering, 51(3), 539-549. https://doi.org/10.22059/ijbse.2020.292847.665244
- Olakanmi, S., Karunakaran, C., & Jayas, D. (2023). Applications of X-ray micro-computed tomography and small-angle X-ray scattering techniques in food systems: A concise review. Journal of Food Engineering, 342, 111355. https://doi.org/10.1016/j.jfoodeng.2022.111355
- Ozel, B., & Oztop, M. H. (2021). A quick look to the use of time domain nuclear magnetic resonance relaxometry and magnetic resonance imaging for food quality applications. Current Opinion in Food Science, 41, 122-129. https://doi.org/10.1016/j.cofs.2021.03.012
- Perez-Palacios, T., Avila, M., Antequera, T., Torres, J. P., González-Mohino, A., & Caro, A. (2023). MRI-computer vision on fresh and frozen-thawed beef: Optimization of methodology for classification and quality prediction. Meat Science, 197, 109054. https://doi.org/10.1016/j.meatsci.2022.109054
- Razavi, M. S., Asghari, A., Azadbakh, M., & Shamsabadi, H. A. (2018). Analyzing the pear bruised volume after static loading by Magnetic Resonance Imaging (MRI). Scientia Horticulturae, 229, 33-39. https://doi.org/10.1016/j.scienta.2017.10.011
- Shicheng, Q., Youwen, T., Ping, S., Kuan, H., & Shiyuan, S. (2019). Analysis and detection of decayed blueberry by low-field nuclear magnetic resonance and imaging. Postharvest Biology and Technology, 156, 110951. https://doi.org/10.1016/j.postharvbio.2019.110951
- Srivastava, R. K., Talluri, S., Beebi, S. K., & Kumar, B. R. (2018). Magnetic resonance imaging for quality evaluation of fruits: A review. Food Analytical Methods, 11, 2943-2960. https://doi.org/10.1007/s11483-018-9687-1
- Wieme, J., Mollazade, K., Malounas, L., Zude-Sasse, M., Zhao, M., Gowen, A., Argyropoulos, D., Fountas, S., & Van Beek, J. (2022). Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review. Biosystems Engineering, 222, 156-176. https://doi.org/10.1016/j.biosystemseng.2022.07.013
- Zhang, L., & McCarthy, J. M. (2012). Black heart characterization and detection in pomegranate using NMR relaxometry and MR imaging. Postharvest Biology and Technology, 67, 96-101. https://doi.org/10.1016/j.postharvbio.2011.12.018
- Zhang, D., Xu, Y., Huang, W., Tian, X., Xia, Y., Xu, L., & Fan, S. (2019). Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm. Infrared Physics & Technology, 98, 297-304. https://doi.org/10.1016/j.infrared.2019.03.026
- Zhang, Z., Liu, H., Chen, D., Zhang, J., Li, H., Shen, M., Pu, Y., Zhang, Z., Zhao, J., & Hu, J. (2022). SMOTE-based method for balanced spectral nondestructive detection of moldy apple core. Food Control, 141, 109100. https://doi.org/10.1016/j.foodcont.2022.109100
|