Ahmad, P., Latef, A. A. A., Hashem, A., Abd Allah, E. F., Gucel, S., & Tran, L. S. P. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science, 7(347), 1-11. https://doi.org/10.3389/fpls.2016.00347
Ahmed, A. F., Yu, H., Yang, X., & Jiang, W. (2014). Deficit irrigation affects growth, yield, vitamin C content, and irrigation water use efficiency of hot pepper grown in soilless culture. HortScience, 49(6), 722-728. https://doi.org/10.21273/hortsci.49.6.722
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060
Bhuyan, M. H. M. B., Hasanuzzaman, M., Parvin, K., Mohsin, S. M., Al Mahmud, J., Nahar, K., & Fujita, M. (2020). Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regulation, 90(3), 409-424. https://doi.org/10.1007/s10725-020-00594-4
Breda, N. J. J. (2003). Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54, 2403-2417.
Caverzan, A., Casassola, A., & Patussi Brammer, S. (2016). Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. Abiotic and Biotic Stress in Plants - Recent Advances and Future Perspectives, 20(5), 463-480. https://doi.org/10.5772/61368
Dhindsa, R. S., Plumb-dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101. https://doi.org/10.1093/jxb/32.1.93
Dokhanieh, A. Y., Aghdam, M. S., Fard, J. R., & Hassanpour, H. (2013). Postharvest salicylic acid treatment enhances antioxidant potential of cornelian cherry fruit. Scientia Horticulturae, 154, 31-36. https://doi.org/10.1016/j.scienta.2013.01.025
Esim, N., Atici, O., & Mutlu, S. (2014). Effects of exogenous nitric oxide in wheat seedlings under chilling stress. Toxicology and Industrial Health, 30(3), 268-274. https://doi.org/10.1177/0748233712457444
Farahbakhsh, H., & Pasandi Pour, A. (2018). Physiological response of henna, medicinal-industrial plant, to application of salicylic acid under drought stress. Plant Process and Function, 6(19), 233-246. (in Persian with English abstract).
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185-212. https://doi.org/10.1051/agro:2008021
Farouk, S., & Al-Huqail, A. A. (2020). Sodium nitroprusside application regulates antioxidant capacity, improves phytopharmaceutical production and essential oil yield of marjoram herb under drought. Industrial Crops and Products, 158, 1-11. https://doi.org/10.1016/j.indcrop.2020.113034
Fayez, K. A., & Bazaid, S. A. (2014). Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of the Saudi Society of Agricultural Sciences, 13(1), 45-55. https://doi.org/10.1016/j.jssas.2013.01.001
Hossain, Z., Nouri, M. Z., & Komatsu, S. (2012). Plant cell organelle proteomics in response to abiotic stress. Journal of Proteome Research, 11(1), 37-48. https://doi.org/10.1021/pr200863r
Hosseini, M. S., Samsampour, D., Ebrahimi, M., Abadía, J., & Khanahmadi, M. (2018). Effect of drought stress on growth parameters, osmolyte contents, antioxidant enzymes and glycyrrhizin synthesis in licorice ( Glycyrrhiza glabra L.) grown in the field. Phytochemistry, 156, 124-134. https://doi.org/10.1016/j.phytochem.2018.08.018
Jabeen, Z., Fayyaz, H. A., Irshad, F., Hussain, N., Hassan, M. N., Li, J., Rehman, S., Haider, W., Yasmin, H., Mumtaz, S., Bukhari, S. A. H., Khalofah, A., Al-Qthanin, R. N., & Alsubeie, M. S. (2021). Sodium nitroprusside application improves morphological and physiological attributes of soybean ( Glycine max L.) under salinity stress. Plos One, 16(4), 1-15. https://doi.org/10.1371/journal.pone.0248207
Khalvandi, M., Siosemardeh, A., Roohi, E., & Keramati, S. (2021). Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 7(1), 1-11. https://doi.org/10.1016/j.heliyon.2021.e05908
Khazaei, Z., & Estaji, A. (2020). Effect of foliar application of ascorbic acid on sweet pepper ( Capsicum annuum) plants under drought stress. Acta Physiologiae Plantarum, 42(118), 1-12. https://doi.org/10.1007/s11738-020-03106-z
Klessig, D. F., Choi, H. W., & Dempsey, D. A. (2018). Systemic acquired resistance and salicylic acid: Past, present, and future. Molecular Plant-Microbe Interactions, 31(9), 871-888. https://doi.org/10.1094/MPMI-03-18-0067-CR
Kreuser, B. (2015). Effective use of plant growth regulators on golf putting greens. Green Section Record, 53(7), 1-10.
Kukreja, S., Nandwal, A. S., Kumar, N., Sharma, S. K., Sharma, S. K., Unvi, V., & Sharma, P. K. (2005). Plant water status, H 2O 2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biologia Plantarum, 49(2), 305-308. https://doi.org/10.1007/s10535-005-5308-4
Liu, X., Chen, J., Wang, G. H., Wang, W. H., Shen, Z. J., Luo, M. R., Gao, G. F., Simon, M., Ghoto, K., & Zheng, H. L. (2016). Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L. Plant and Soil, 400(2), 177-192. https://doi.org/10.1007/s11104-015-2719-7
Martín-Mex, R., Villanueva-Couoh, E., Herrera-Campos, T., & Larqué-Saavedra, A. (2005). Positive effect of salicylates on the flowering of African violet. Scientia Horticulturae, 103(4), 499-502. https://doi.org/10.1016/j.scienta.2004.06.020
Mohasseli, V., & Sadeghi, S. (2019). Exogenously applied sodium nitroprusside improves physiological attributes and essential oil yield of two drought susceptible and resistant specie of Thymus under reduced irrigation. Industrial Crops and Products, 130, 130-136. https://doi.org/10.1016/j.indcrop.2018.12.058
Munsif, F., Shah, T., Arif, M., Jehangir, M., Afridi, M. Z., Ahmad, I., Jan, B. L., & Alansi, S. (2022). Combined effect of salicylic acid and potassium mitigates drought stress through the modulation of physio-biochemical attributes and key antioxidants in wheat. Saudi Journal of Biological Sciences, 29(6), 1-15. https://doi.org/10.1016/j.sjbs.2022.103294
Pirasteh-Anosheh, H., & Emam, Y. (2018). Modulation of oxidative damage due to salt stress using salicylic acid in Hordeum vulgare. Archives of Agronomy and Soil Science, 64(9), 1268-1277. https://doi.org/10.1080/03650340.2018.1423556
Rady, M. M., Belal, H. E. E., Gadallah, F. M., & Semida, W. M. (2020). Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 266(10), 1-18. https://doi.org/10.1016/j.scienta.2020.109290
Rezayian, M., Ebrahimzadeh, H., & Niknam, V. (2020). Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress. Journal of Soil Science and Plant Nutrition, 20(3), 1122-1132. https://doi.org/10.1007/s42729-020-00198-x
Rouhani, L., Zamani, M. J., & Fotovat, R. (2015).Variation in stomatal size and density of barley genotypes under drought stress and normal conditions. Plant Research Journal (Iranian Biology Journal), 28(5), 986-993. (in Persian with English abstract).
Salarpour, F., & Farahbakhsh, H. (2016). Effects of salicylic acid on some physiological traits, yield and yield components of fennel (Foeniculum vulgare Mill.) under drought stress. Iranian Journal of Medicinal and Aromatic Plants, 32(2), 216-230. (in Persian with English abstract).
Singh, D. K., Luqman, S., & Mathur, A. K. (2015). Lawsonia inermis L. - A commercially important primaeval dying and medicinal plant with diverse pharmacological activity: A review. Industrial Crops and Products, 65, 269-286. https://doi.org/10.1016/j.indcrop.2014.11.025
Tadashi, H., & Theodore, C. H. (1999). Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. Field Crops Research, 62, 53–62.
Valentovič, P., Luxová, M., Kolarovič, L., & Gašparíková, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant, Soil and Environment, 52(4), 186-191. https://doi.org/10.17221/3364-pse
Wang, Y. Y., Wang, Y., Li, G. Z., & Hao, L. (2019). Salicylic acid-altering arabidopsis plant response to cadmium exposure: Underlying mechanisms affecting antioxidation and photosynthesis-related processes. Ecotoxicology and Environmental Safety, 169, 645-653. https://doi.org/10.1016/j.ecoenv.2018.11.062
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3), 1-36. https://doi.org/10.3390/horticulturae7030050
|