- Antanaitis, R., Juozaitienė, V., Malašauskienė, D., & Televičius, M. (2019). Can rumination time and some blood biochemical parameters be used as biomarkers for the diagnosis of subclinical acidosis and subclinical ketosis? Veterinary and Animal Science, 8, 100077. https://doi.org/10.1016/j.vas.2019.100077
- Ayadi, S., Ben Said, A., Jabbar, R., Aloulou, C., Chabbouh, A., & Achballah, A. B. (2020). Dairy cow rumination detection: A deep learning approach. In Distributed Computing for Emerging Smart Networks: Second International Workshop, DiCES-N 2020, Bizerte, Tunisia, December 18, 2020, Proceedings 2 (pp. 123-139). Springer International Publishing. https://doi.org/10.48550/arXiv.2101.10445
- Beauchemin, K. A. (2018). Invited review: Current perspectives on eating and rumination activity in dairy cows. Journal of Dairy Science, 101(6), 4762-4784. https://doi.org/10.3168/jds.2017-13706
- Behneghar, H., Majidi, B., & Movaghar, A. (2021). Design of Hardware and Software Platform for Intelligent Automation of Livestock Farming using Internet of Things. Agricultural Mechanization and Systems Research, 22(78), 107-126. https://doi.org/10.22092/amsr.2021.352371.1367
- Berckmans, D., & Guarino, M. (2017). From the Editors: Precision livestock farming for the global livestock sector. Animal Frontiers, 7(1), 4-5. https://doi.org/10.2527/af.2017.0101
- Benaissa, S., Tuyttens, F. A., Plets, D., De Pessemier, T., Trogh, J., Tanghe, E., ... & Sonck, B. (2019). On the use of on-cow accelerometers for the classification of behaviours in dairy barns. Research in Veterinary Science, 125, 425-433. https://doi.org/10.1016/j.rvsc.2017.10.005
- Cavaliere, A., & Ventura, V. (2018). Mismatch between food sustainability and consumer acceptance toward innovation technologies among millennial students: The case of Shelf Life Extension. Journal of Cleaner Production, 175, 641-650. https://doi.org/10.1016/j.jclepro.2017.12.087
- Chang, A. Z., Fogarty, E. S., Moraes, L. E., García-Guerra, A., Swain, D. L., & Trotter, M. G. (2022). Detection of rumination in cattle using an accelerometer ear-tag: A comparison of analytical methods and individual animal and generic models. Computers and Electronics in Agriculture, 192, 106595. https://doi.org/10.1016/j.compag.2021.106595
- Cocco, R., Canozzi, M. E. A., & Fischer, V. (2021). Rumination time as an early predictor of metritis and subclinical ketosis in dairy cows at the beginning of lactation: Systematic review-meta-analysis. Preventive Veterinary Medicine, 189, 105309. https://doi.org/10.1016/j.prevetmed.2021.105309
- Eldesouky, A., Mesias, F. J., Elghannam, A., & Escribano, M. (2018). Can extensification compensate livestock greenhouse gas emissions? A study of the carbon footprint in Spanish agroforestry systems. Journal of Cleaner Production, 200, 28-38. https://doi.org/10.1016/j.jclepro.2018.07.279
- Fournel, S., Rousseau, A. N., & Laberge, B. (2017). Rethinking environment control strategy of confined animal housing systems through precision livestock farming. Biosystems Engineering, 155, 96-123. https://doi.org/10.1016/j.biosystemseng.2016.12.005
- Grinter, L. N., Campler, M. R., & Costa, J. H. C. (2019). Validation of a behavior-monitoring collar's precision and accuracy to measure rumination, feeding, and resting time of lactating dairy cows. Journal of Dairy Science, 102(4), 3487-3494. https://doi.org/10.3168/jds.2018-15563
- Gusterer, E., Kanz, P., Krieger, S., Schweinzer, V., Süss, D., Lidauer, L., ... & Iwersen, M. (2020). Sensor tech0logy to support herd health monitoring: Using rumination duration and activity measures as unspecific variables for the early detection of dairy cows with health deviations. Theriogenlogy, 157, 61-69. https://doi.org/10.1016/j.theriogenology.2020.07.028
- Javani, M., Navid, H., Karimi, H., Hosseinkhani, A., & Vahedi Tekmehdash, E. (2022). Development of a method to measure cow rumination. Thesis.
- Liboreiro, D. N., Machado, K. S., Silva, P. R., Maturana, M. M., Nishimura, T. K., Brandão, A. P., ... & Chebel, R. C. (2015). Characterization of peripartum rumination and activity of cows diagnosed with metabolic and uterine diseases. Journal of Dairy Science, 98(10), 6812-6827. https://doi.org/10.3168/jds.2014-8947
- Meen, G. H., Schellekens, M. A., Slegers, M. H. M., Leenders, N. L. G., van Erp-van der Kooij, E., & Noldus, L. P. (2015). Sound analysis in dairy cattle vocalisation as a potential welfare monitor. Computers and Electronics in Agriculture, 118, 111-115. https://doi.org/10.1016/j.compag.2015.08.028
- Pahl, C., Hartung, E., Mahlkow-Nerge, K., & Haeussermann, A. (2015). Feeding characteristics and rumination time of dairy cows around estrus. Journal of Dairy Science, 98(1), 148-154. https://doi.org/10.3168/jds.2014-8025
- Ruuska, S., Hämäläinen, W., Kajava, S., Mughal, M., Matilainen, P., & Mononen, J. (2018). Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle. Behavioural Processes, 148, 56-62. https://doi.org/10.1016/j.beproc.2018.01.004
- Shen, W., Zhang, A., Zhang, Y., Wei, X., & Sun, J. (2020). Rumination recognition method of dairy cows based on the change of noseband pressure. Information Processing in Agriculture, 7(4), 479-490. https://doi.org/10.1016/j.inpa.2020.01.005
- Smith, D., Rahman, A., Bishop-Hurley, G. J., Hills, J., Shahriar, S., Henry, D., & Rawnsley, R. (2016). Behavior classification of cows fitted with motion collars: Decomposing multi-class classification into a set of binary problems. Computers and Electronics in Agriculture, 131, 40-50.
- Stangaferro, M. L., Wijma, R., Caixeta, L. S., Al-Abri, M. A., & Giordano, J. O. (2016). Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders. Journal of Dairy Science, 99(9), 7395-7410. https://doi.org/10.3168/jds.2016-10907
- Syarif, I., Ahsan, A. S., Al Rasyid, M. U. H., & Pratama, Y. P. (2019, September). Health monitoring and early diseases detection on dairy cow based on internet of things and intelligent system. In 2019 International Electronics Symposium (IES) (pp. 183-188). IEEE. https://doi.org/10.1109/ELECSYM.2019.8901527
- Topp-Becker, J., & Ellis, J. D. (2017). The role of sustainability reporting in the agri-food supply chain. Journal of Agriculture and Environmental Sciences, 6(1), 17-29. https://doi.org/10.15640/jaes.v6n1a2
- Wang, L., Xie, Q., & Xu, Y. (2017). Recognition and analysis of ruminating behavior of dairy cows based on wearable device. Animal Environment and Welfare.
- Zambelis, A., Wolfe, T., & Vasseur, E. (2019). Validation of an ear-tag accelerometer to identify feeding and activity behaviors of tiestall-housed dairy cattle. Journal of Dairy Science, 102(5), 4536-4540. https://doi.org/10.3168/jds.2018-15766
- Zehner, N., Umstätter, C., Niederhauser, J. J., & Schick, M. (2017). System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Computers and Electronics in Agriculture, 136, 31-41. https://doi.org/10.1016/j.compag.2017.02.021
|