[1] Bullo, T.A., Duressa, G.F. and Degla, G.A. Higher order fitted operator finite difference method for two-parameter parabolic convection-diffusion problems, Int. J. Eng. Technol. Manag. Appl. Sci. 11(4) (2019), 455–467.
[2] Cen, Z. A hybrid difference scheme for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient, Appl. Math. Comput. 169(1) (2005), 689–699.
[3] Chandru, M., Das, P. and Ramos, H. Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data, Math. Methods Appl. Sci. 41(14) (2018), 5359–5387.
[4] Chandru, M., Prabha, T., Das, P. and Shanthi, V. A Numerical Method for Solving Boundary and Interior Layers Dominated Parabolic Problems with Discontinuous Convection Coefficient and Source Terms, Differ.
Equ. Dyn. Syst. 27 (2019), 91–112.
[5] Crank, J. and Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Adv. Comput. Math. 7 (1996), 207–226.
[6] Das, P. A higher order difference method for singularly perturbed parabolic partial differential equations, J. Differ. Equ. Appl. 24(3)(2018), 452–477.
[7] Das, P. and Mehrmann, V. Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters, BIT Numer. Math. 56(1) (2016), 51–76.
[8] Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E. and Shishkin,G.I. Robust Computational Techniques for Boundary Layers, vol. 1. Chapman & Hall/CRC,New York, 2000.
[9] Gracia, G.L. and O’Riordan, E. Numerical approximation of solution derivatives in the case of singularly perturbed time dependent reaction–diffusion problems, J. Comput. Appl. Math. 273 (2015), 13–24.
[10] Gupta, V., Kadalbajoo, M.K. and Dubey, R.K. A parameter-uniformhigher order inite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters, Int. J. Comput.
Math. 96(3) (2018), 1–29.
[11] Kadalbajoo, M.K. and Yadaw, A.S. Parameter-uniform finite ele-ment method for two-parameter singularly perturbed parabolic reaction-diffusion problems, Int. J. Comput. Methods 9(4) (2012), 1250047.
[12] Kumar, D. and Kumari, P. Uniformly convergent scheme for two-parameter singularly perturbed problems with non-smooth data, Numer. Methods Partial Differ.Equ. 37(1) (2021), 796–817.
[13] Markowich, P.A. A finite difference method for the basic stationary semi-conductor device equations. numerical boundary value ODEs (Vancou-ver, B.C.,1984), Progr. Sci. Comput., Vol. 5, Birkhäuser Boston, Boston,
MA, (1985), 285–301.
[14] Mekonnen, T.B. and Duressa, G.F. Computational method for singularly perturbed two-parameter parabolic convection-diffusion problems, IMA J. Numer. Anal. 7(1) (2020), 1829277.
[15] Mukherjee, K. and Natesan, S. ϵ-uniform error estimate of hybrid nu-merical scheme for singularly perturbed parabolic problems with interior layers, Numer. Algorithms, 58 (2011), 103–141.
[16] Munyakazi, J.B. A robust finite difference method for two-parameter parabolic convection-diffusion problems, Appl. Math. Inf. Sci. 9(6)(2015), 2877–2883.
[17] O’Malley, R.E. Introduction to Singular Perturbations, Academic Press, New York, London, 1974.
[18] O’Riordan, E., Pickett, M.L. and Shishkin, G.I. Singularly perturbed problems modeling reaction-convection-diffusion processes, Comput. Methods Appl. Math. 3(3) (2003), 424–442.
[19] O’Riordan, E., Shishkin, G.I. and Picket, M.L. Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems, Math. Comput. 75(255) (2006), 1135–1154.
[20] Schlichting, H. Boundary Layer Theory, seventh ed., McGraw-Hill, New York, 1979.
[21] Singh, S. and Kumar, D. Parameter uniform numerical method for a system of singularly perturbed parabolic convection–diffusion equations, Math. Comput. Simul. 212 (2023), 360–381.
[22] Singh, S., Choudhary, R. and Kumar, D. An efficient numerical tech-nique for two-parameter singularly perturbed problems having disconti-nuity in convection coefficient and source term, Comput. Appl. Math.
42(62) (2023), 42–62.
[23] Stynes, M. and Roos, H.G. The midpoint upwind scheme, Appl. Numer. Math. 23(3) (1997), 361–374.
[24] Zahra, W.K., El-Azab, M.S. and El Mhlawy, A.M. Spline difference scheme for two-parameter singularly perturbed partial differential equa-tions, Int. J. Appl. Math. 32(1-2) (2014), 185–201.