- Ahsan, M. N., & Warner, J. (2014). The socioeconomic vulnerability index: A pragmatic approach for assessing climate change led risks–A case study in the south-western coastal Bangladesh. International Journal of Disaster Risk Reduction, 8, 32-49. (in Persian with English abstract). http://doi.org/10.1016/j.ijdrr.2013.12.009
- Antwi-Agyei, P., Fraser, E. D., Dougill, A. J., Stringer, L. C., & Simelton, E. (2012). Mapping the vulnerability of crop production to drought in Ghana using rainfall, yield and socioeconomic data. Applied Geography, 32(2), 324-334. http://doi.org/10.1016/j.apgeog.2011.06.010
- Assimacopoulos, D., Kampragkou, E., Andreu, J., Bifulco, C., De Carli, A., De Stefano, L., & Musolino, D. (2014). Future drought impact and vulnerability. Case study scale. 20.
- Azizi Mobaser, J., Rasoulzadeh, A., Rahmati, A., Shayeghi, A., & Bakhtar, A. (2020). Evaluating the performance of Era-5 Re-analysis data in estimating daily and monthly precipitation, Case Study; Ardabil Province. Iranian Journal of Soil and Water Research, 51(11), 2937-2951 (in Persian with English abstract). https://doi.org/10.22059/ijswr.2020.302176.668600
- Birkmann, J. (2008). Assessing vulnerability before, during and after a natural disaster in fragile regions: Case study of the 2004 Indian Ocean tsunami in Sri Lanka and Indonesia: WIDER Research Paper. Helsinki: UNU-WIDER.
- Deems, H. (2010). Vulnerability of rural communities in the Mediterranean region to climate change and water scarcity: The case of Cyprus. Spain: Universitat Autònoma de Barcelona.
- Dabanli, I. (2018). Drought Risk Assessment by Using Drought Hazard and Vulnerability Indexes. Natural Hazards and Earth System Sciences Discussions, 2018, 1-15. https://doi.org/10.5194/nhess-2018-129.
- Eslami, A., Mirisoliman, S. J., & Rashidi, M. (2021). Vulnerability analysis and identification of meteorological drought risk zones (Case research: North Khorasan province). Journal of Water and Soil Conservation, 28(3), 191-205. (in Persian with English abstract). https://doi.org/10.22069/jwsc.2022.18841.3434.
- Gee, G., & Bauder, J. (1979). Particle size analysis by hydrometer: A simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Science Society of America Journal, 43(5), 1004-1007. https://doi.org/10.2136/sssaj1979.03615995004300050038x.
- Ghaseminejad, S., Soltani, S., & Soffianian, A. (2014). Drought risk assessment in Isfahan province. JWSS-Isfahan University of Technology, 68(18), 213-226. (in Persian with English abstract). http://dorl.net/dor/20.1001.1.24763594.1393.18.68.19.4
- Ghorbani, M. (2017). Agricultural Insurance Principles. Mashhad: Publications of Ferdowsi university of Mashhad. (in Persian with English abstract)
- Gravandi, S., & Alibeygi, A. (2011). Determinants of Farmers’ Risk Management in Kermanshah Township. Iranian Journal of Agricultural Economics and Development Research, 42(2), 255-264. (in Persian with English abstract). http://dorl.net/dor/20.1001.1.20084838.1390.42.2.10.3.
- Guttman, N. B. (1999). Accepting the standardized precipitation index: A calculation algorithm 1. JAWRA Journal of the American Water Resources Association, 35(2), 311-322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
- Habibi, Y., Azizi, J., & Shal, F. K. (2017). Role of Insurance in broiler farms risk management (A case of Rudbar County). International Journal of Agricultural Management and Development (IJAMAD), 8(3), 321-328.
- Hardaker, J. B., Lien, G., Anderson, J. R., & Huirne, R. B. (2004). Coping with risk in agriculture: Applied decision analysis. London, UK: Wallingford: CABI Publishing.
- IranMeteorologicaOrganization. (2022). Retrieved from https://www.irimo.ir/far/index.php.
- Kim, H., Park, J., Yoo, J., & Kim, T. W. (2015). Assessment of drought hazard, vulnerability, and risk: A case study for administrative districts in South Korea. Journal of Hydro-Environment Research, 9(1), 28-35. http://doi.org/10.1016/j.jher.2013.07.003
- Kirkham, M. (2011). Water dynamics in soils. In L. Jerry Hatfield and J. Thomas Sauer (Ed.), Building a Stable Base for Agriculture (pp. 53-65): American Society of Agronomy and Soil Science Society of America.
- Ladányi, M. (2003). Risk methods and their applications in agriculture. Applied Ecology and Environmental Research, 6(1), 147-164.
- Lakzian, A., AVAL, M. B., & Gorbanzadeh, N. (2010). Comparison of pattern recognition, artificial neural network and pedotransfer functions for estimation of soil water parameters. Notulae Scientia Biologicae, 2(3), 114-120. https://doi.org/10.15835/nsb234737.
- Liu, X., Wang, Y., Peng, J., Braimoh, A. K., & Yin, H. (2013). Assessing vulnerability to drought based on exposure, sensitivity and adaptive capacity: A case study in middle Inner Mongolia of China. Chinese Geographical Science, 23, 13-25. https://doi.org/10.1007/s11769-012-0583-4.
- Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616-620. https://doi.org/10.1126/science.1204531
- Mathbout, S., Lopez-Bustins, J. A., Martin-Vide, J., Bech, J., & Rodrigo, F. S. (2018). Spatial and temporal analysis of drought variability at several time scales in Syria during 1961–2012. Atmospheric Research, 200, 153-168. http://doi.org/10.1016/j.atmosres.2017.09.016.
- McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Paper presented at the Proceedings of the 8th Conference on Applied Climatology.
- MinistryofAgricultureofIran. (2023). Retrieved from https://www.maj.ir/.
- Mirisoliman, J., Ownegh, M., & Barani, H. (2020). Zoning of meteorological drought risk in customary Kormanj nomadic territories of North Khorasan. Journal of Arid Biome, 10(1), 109-125. (in Persian with English abstract).
- Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1-2), 202-216. http://doi.org/10.1016/j.jhydrol.2010.07.012.
- Mohammadi Ghaleni, M., & Sharafi, S. (2022). Evaluation of CRU TS4. 05 and ERA5 Datasets accuracy to precipitation, temperature and potential evapotranspiration in different climates across Iran. Iranian Journal of Irrigation & Drainage, 16(5), 879-890. (in Persian). https://dor.isc.ac/dor/20.1001.1.20087942.1401.16.5.15.0.
- Murthy, C., Yadav, M., Mohammed Ahamed, J., Laxman, B., Prawasi, R., Sesha Sai, M., & Hooda, R. (2015). A study on agricultural drought vulnerability at disaggregated level in a highly irrigated and intensely cropped state of India. Environmental Monitoring and Assessment, 187, 140. http://10.1007/s10661-10015-14296-x.
- Parvaze, S., Khan, J. N., Kumar, R., & Allaie, S. P. (2021). Flood forecasting in the sparsely gauged jhelum river basin of greater himalayas using integrated hydrological and hydraulic modelling approach. Available at Research Square. https://doi.org/10.21203/rs.3.rs-461873/v1
- Pereira, L. D., Rocha, J. D., Debortoli, N., Parente, I. I., Eiró, F., Bursztyn, M., & Rodrigues-Filho, S. (2014). Integrated assessment of smallholder farming’s vulnerability to drought in the Brazilian Semi-arid: A case study in Ceará. Climatic Change, 127, 93-105. https://doi.org/10.1007/s10584-014-1116-1
- Rejoice, T. (2003). Rainfall reliability, drought and flood vulnerability in Botswana. Water Sa, 29(4), 389-392. https://doi.org/10.4314/wsa.v29i4.5043
- Şen, Z. (2015). Applied drought modeling, prediction, and mitigatio: Elsevier.
- Shahabfar, A., Ghulam, A., & Eitzinger, J. (2012). Drought monitoring in Iran using the perpendicular drought indices. International Journal of Applied Earth Observation and Geoinformation, 18, 119-127. https://doi.org/10.1016/j.jag.2012.01.011.
- Sharafi, L., Zarafshani, K., Keshavarz, , Azadi, H., & Van Passel, S. (2020). Drought risk assessment: Towards drought early warning system and sustainable environment in western Iran. Ecological Indicators, 114, 106276. http://dx.doi.org/10.1016/j.ecolind.2020.106276
- Subash, N., Mohan, H. R., & Banukumar, K. (2011). Comparing water-vegetative indices for rice (Oryza sativa)–wheat (Triticum aestivum L.) drought assessment. Computers and Electronics in Agriculture, 77(2), 175-187. https://doi.org/10.1016/j.compag.2011.05.001.
- Tatari, M., Koochekian, A., & Nassiri Mahalati, M. (2009). Dryland wheat yield prediction using precipitation and edaphic data by applying of regression models. Iranian Journal of Field Crops Research, 7(2), 357-365. (in Persian with English abstract). https://dor.isc.ac/dor/20.1001.1.20081472.1388.7.2.3.3.
- Unger, P. W., Kirkham, M. B., & Nielsen, D. C. (2010). Water conservation for agriculture. In T. M. a. S. Zobeck, W.F. (Ed.), Soil and water conservation advances in the United States (pp. 1-45): Soil Science Society of America.
- Van Wart, J., Grassini, P., & Cassman, K. G. (2013). Impact of derived global weather data on simulated crop yields. Global Change Biology, 19(12), 3822-3834 .https://doi.org/10.1111/gcb.12302.
- Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. http://doi.org/10.1097/00010694-193401000-00003.
- Wilhelmi, O. V., & Wilhite, D. A. (2002). Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study. Natural Hazards, 25(1), 37-58. https://doi.org/10.1023/A:1013388814894
- Wilhite, D. A. (2000). Drought as a Natural Hazard: Concepts And Definitions New York: Routledge Publishers.
- Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O'donnell, J., Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, 90(C5), 8995-9005. https://doi.org/10.1029/JC090iC05p08995
- WorldBank. (2015). World development indicators. Retrieved from http://data.worldbank.org/data-catalog/world-development-indicators.
- WorldBank. (2016). Agricultural sector risk assessment: methodological guidance for practitioners. Agriculture global practice discussion paper. World Bank, Washington, DC, 10.
- Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., & Turskis, Z. (2018). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501-2519.
- Yuan, X.-C., Wang, Q., Wang, K., Wang, B., Jin, J.-L., & Wei, Y.-M. (2013). China’s regional vulnerability to drought and its mitigation strategies under climate change: data envelopment analysis and analytic hierarchy process integrated approach. Mitigation and Adaptation Strategies for Global Change, 20, 341-359. https://doi.org/10.1007/s11027-013-9494-7
- Zhao, J., Zhang, Q., Zhu, X., Shen, Z., & Yu, H. (2020). Drought risk assessment in China: evaluation framework and influencing factors. Geography and Sustainability, 1(3), 220-228. https://doi.org/10.1016/j.geosus.2020.06.005
|