بررسی آلیاژهای نایتینول در سیمهای ارتودنسی: خواص، کاربرد و سازوکار
مهندسی متالورژی و مواد
مقاله 5 ، دوره 36، شماره 1 - شماره پیاپی 37 ، فروردین 1404، صفحه 61-88 اصل مقاله (1.99 M )
نوع مقاله: علمی و پژوهشی
شناسه دیجیتال (DOI): 10.22067/jmme.2025.91160.1171
نویسندگان
محمدرضا سیدی گل محله 1 ؛ سروش پرویزی* 2 ؛ زهرا علیرضائی 2
1 دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف
2 گروه مواد و متالورژی، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران
چکیده
نایتینول(NiTi)، به دلیل ویژگیهای منحصربهفردی چون حافظه شکلی، مقاومت به خستگی و زیستسازگاری بالا، در حوزههای پزشکی و مهندسی بسیار مورد استفاده قرار گرفتهاست. از مهمترین کاربردهای این آلیاژ در ساخت سیمهای ارتودنسی است که به دلیل توانایی اعمال نیروی ثابت و کمفشار، موجب بهبود روند درمان و کاهش زمان درمان میشود. با این حال، چالشهای متعددی از جمله آزادسازی یونهای نیکل و تأثیر آن بر زیستسازگاری، کنترل ترکیب شیمیایی و بهینهسازی فرآیندهای تولید، همچنان نیازمند بررسیهای عمیقتر هستند. در این پژوهش، تأثیر فرآیندهای تولید از جمله ذوب القایی و متالورژی پودر بر خواص مکانیکی و فازی سیمهای نایتینول بررسی شده است. همچنین، نقش عملیات حرارتی و پیرسازی بر اصلاح ساختاری و بهبود خاصیت فوقالاستیک این آلیاژ تحلیل شده است. بررسیهای انجامشده نشان میدهد که با کنترل دقیق ترکیب شیمیایی و جلوگیری از اکسیداسیون تیتانیوم در مراحل تولید، میتوان خواص عملکردی نایتینول را بهینهسازی کرد. علاوه بر این، استفاده از پوششهای محافظ مانند Ni-P-NiTi نقش بسزایی در کاهش آزادسازی یونهای نیکل و افزایش مقاومت به خوردگی این آلیاژ دارد. نتایج حاصل از بررسی نیروی بازگشتی سیمهای نایتینول نشان میدهد که پیرسازی در دمای 400 تا 450 درجه سانتیگراد و به مدت کمتر از 60 دقیقه، خاصیت فوقالاستیک را بهبود داده و استحکام مکانیکی را افزایش میدهد. در نهایت، تأثیر عوامل محیطی مانند pH و دما بر مقاومت به خوردگی این آلیاژ مورد بررسی قرار گرفته و مطابق نتایج اعمال پوششهای سطحی میتواند نرخ خوردگی را بهطور قابلتوجهی کاهش دهد.
کلیدواژهها
نایتینول ؛ حافظه شکلی ؛ خاصیت فوقالاستیک ؛ زیستسازگاری ؛ مقاومت به خوردگی ؛ عملیات حرارتی ؛ پوششدهی
مراجع
[1] A. Munir, S. Zulfiqar, J. J. Mathavan, and A. Sohail, "Understanding the force deflection behavior of NiTi archwire at distinct bending configuration: A narrative review in vitro Studies," Engineering Journal, vol. 28, no. 2, pp. 15-27, 2024. https://doi.org/10.4186/ej.2024.28.2.15
[2] A. Wadood, "Brief overview on nitinol as biomaterial," Advances in Materials Science and Engineering, vol. 2016, no. 1, p. 4173138, 2016. https://doi.org/10.1155/2016/4173138
[3] Z. Wang, J. Everaerts, E. Salvati, and A. M. Korsunsky, "Evolution of thermal and mechanical properties of Nitinol wire as a function of ageing treatment conditions," Journal of Alloys and Compounds, vol. 819, p. 153024, 2020. https://doi.org/10.1016/j.jallcom.2019.153024
[4] X. Huang and Y. Liu, "Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy," Scripta Materialia , vol. 45, no. 2, pp. 153-160, 2001. https://doi.org/10.1016/S1359-6462(01)01005-3
[5] N. Chahine, A. Benmarouane, A. Addad, and A. Fadel, "Study of the corrosion of the nickel-titanium orthodontics archwires in the mouth," Scholars Journal of Dental Sciences, vol. 9, no. 2, pp. 28-38, 2022. https://doi.org/10.36347/sjds.2022.v09i02.002
[6] A. Phukaoluan et al. , "Comparison of friction forces between stainless orthodontic steel brackets and TiNi wires in wet and dry conditions," International orthodontics, vol. 15, no. 1, pp. 13-24, 2017. https://doi.org/10.1016/j.ortho.2016.12.017
[7] P. Chainani, P. Paul, and V. Shivlani, "Recent advances in orthodontic archwires: a review," Cureus, vol. 15, no. 10, 2023. https://doi.org/10.7759/cureus.47633
[8] J. Lee and Y. C. Shin, "Effects of composition and post heat treatment on shape memory characteristics and mechanical properties for laser direct deposited nitinol," Lasers in Manufacturing and Materials Processing, vol. 6, pp. 41-58, 2019. https://doi.org/10.1007/s40516-019-0079-5
[9] T. Duerig, "The metallurgy of Nitinol as it pertains to medical devices," in Titanium in medical and dental applications : Elsevier, 2018, pp. 555-570. https://doi.org/10.1016/B978-0-12-812456-7.00025-1
[10] E. Farber, J.-N. Zhu, A. Popovich, and V. Popovich, "A review of NiTi shape memory alloy as a smart material produced by additive manufacturing," Materials Today: Proceedings, vol. 30, pp. 761-767, 2020. https://doi.org/10.1016/j.matpr.2020.01.563
[11] J. Frenzel, Z. Zhang, K. Neuking, and G. Eggeler, "High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles," Journal of Alloys and Compounds, vol. 385, no. 1-2, pp. 214-223, 2004. https://doi.org/10.1016/j.jallcom.2004.05.002
[12] Foolad24, "Introduction to the induction furnace," foolad24.com. [Online]. Available: https://foolad24.com/post/article. [accessed March 10, 2025].
[13] J. Chu, Y. Bao, X. Li, F. Gao, and M. Wang, "Characterization of oxidation behavior of Mn fumes generated in the vacuum treatment of melting Mn steels," steel research international, vol. 92, no. 1, p. 2000333, 2021. https://doi.org/10.1002/srin.202000333
[14] J. Cui, B. Li, Z. Liu, F. Qi, J. Xu, and J. Zhang, "Comparative investigation on ingot evolution and product quality under different arc distributions during vacuum arc remelting process," Journal of materials research and technology, vol. 18, pp. 3991-4006, 2022. https://doi.org/10.1016/j.jmrt.2022.04.058
[15] M. H. Elahinia, M. Hashemi, M. Tabesh, and S. B. Bhaduri, "Manufacturing and processing of NiTi implants: A review," Progress in materials science, vol. 57, no. 5, pp. 911-946, 2012. https://doi.org/10.1016/j.pmatsci.2011.11.001
[16] S. Parvizi, S. M. Hashemi, F. Asgarinia, M. Nematollahi, and M. Elahinia, "Effective parameters on the final properties of NiTi-based alloys manufactured by powder metallurgy methods: A review," Progress in Materials Science, vol. 117, p. 100739, 2021. https://doi.org/10.1016/j.pmatsci.2020.100739
[17] V. Kumar, H. Kaur, A. Kumari, G. Hooda, V. Garg, and H. Dureja, "Drug delivery and testing via 3D printing," Bioprinting, vol. 36, p. e00298, 2023. https://doi.org/10.1016/j.bprint.2023.e00298
[18] I. Gibson et al. , Additive manufacturing technologies . Springer, 2021. https://doi.org/10.1007/978-3-030-56127-7
[19] K. Otsuka and X. Ren, "Physical metallurgy of Ti–Ni-based shape memory alloys," Progress in materials science, vol. 50, no. 5, pp. 511-678, 2005. https://doi.org/10.1016/j.pmatsci.2004.10.001
[20] K. Bhattacharya, Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect . Oxford University Press, 2003. https://doi.org/10.1093/oso/9780198509349.001.0001
[21] I. Alcaraz et al. , "Properties of superelastic nickel–titanium wires after clinical use," Materials, vol. 16, no. 16, p. 5604, 2023. https://doi.org/10.3390/ma16165604
[22] L. Sun et al. , "Stimulus-responsive shape memory materials: A review," Materials & Design, vol. 33, pp. 577-640, 2012. https://doi.org/10.1016/j.matdes.2011.04.065
[23] ResearchGate, "Mechanism of superelasticity when test temperature is above Af," researchgate.net, 2025. [Online]. Available: https://www.researchgate.net/figure/Mechanism-of-superelasticity-when-test-temperature-is-above-Af-a-Austenite-at-test_fig2_309743317 [accessed March 10, 2025].
[24] ResearchGate, "Stress vs. strain curve of SMA," researchgate.net, 2024. [Online]. Available: https://www.researchgate.net/figure/a-Stress-vs-strain-curve-of-SMA-i-i-ii-i-i-temperature-Or-Austinite-finish_fig3_382884524 [accessed March 10, 2025].
[25] M. Niinomi, "Recent research and development in titanium alloys for biomedical applications and healthcare goods," Science and technology of advanced Materials, vol. 4, no. 5, p. 445, 2003. https://doi.org/10.1016/j.stam.2003.09.002
[26] R. R. Adharapurapu, Phase transformations in nickel-rich nickel-titanium alloys: influence of strain-rate, temperature, thermomechanical treatment and nickel composition on the shape memory and superelastic characteristics , University of California, San Diego, 2007.
[27] F. Pastor et al. , "Effect of fluoride content of mouthwashes on superelastic properties of NiTi orthodontic archwires," Materials, vol. 15, no. 19, p. 6592, 2022. https://doi.org/10.3390/ma15196592
[28] F. Gil, M. Cenizo, E. Espinar, A. Rodriguez, E. Rúperez, and J. Manero, "NiTi superelastic orthodontic wires with variable stress obtained by ageing treatments," Materials Letters, vol. 104, pp. 5-7, 2013. https://doi.org/10.1016/j.matlet.2013.03.135
[29] J. Briceño, A. Romeu, E. Espinar, J. Llamas, and F. Gil, "Influence of the microstructure on electrochemical corrosion and nickel release in NiTi orthodontic archwires," Materials Science and Engineering: C, vol. 33, no. 8, pp. 4989-4993, 2013. https://doi.org/10.1016/j.msec.2013.08.024
[30] P. Sánchez, B. Vidi, J. Mena-Alvarez, J. Gil, C. Rico, and J. M. Aragoneses, "Effect of stabilized martensite on the long-term performance of superelastic NiTi endodontic files," Materials, vol. 16, no. 11, p. 4089, 2023. https://doi.org/10.3390/ma16114089
[31] S. H. Lee and Y. I. Chang, "Effects of recycling on the mechanical properties and the surface topography of nickel-titanium alloy wires," American journal of orthodontics and dentofacial orthopedics, vol. 120, no. 6, pp. 654-663, 2001. https://doi.org/10.1067/mod.2001.118997
[32] E. Rupérez, J. M. Manero, L.-A. Bravo-González, E. Espinar, and F. J. Gil, "Development of biomimetic NiTi alloy: influence of thermo-chemical treatment on the physical, mechanical and biological behavior," Materials, vol. 9, no. 6, p. 402, 2016. https://doi.org/10.3390/ma9060402
[33] J. Gil, E. Rupérez, E. Velasco, C. Aparicio, and J. M. Manero, "Mechanism of fracture of NiTi superelastic endodontic rotary instruments," Journal of Materials Science: Materials in Medicine, vol. 29, pp. 1-6, 2018. https://doi.org/10.1007/s10856-018-6140-7
[34] M. Godoy-Gallardo et al. , "Antibacterial coatings on titanium surfaces: a comparison study between in vitro single-species and multispecies biofilm," ACS applied materials & interfaces, vol. 7, no. 10, pp. 5992-6001, 2015. https://doi.org/10.1021/acsami.5b00402
[35] F. Gil and J. Planell, "Thermal efficiencies of NiTiCu shape memory alloys," Thermochimica Acta, vol. 327, no. 1-2, pp. 151-154, 1999. https://doi.org/10.1016/S0040-6031(98)00607-8
[36] H. Zitter and H. Plenk Jr, "The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility," Journal of biomedical materials research, vol. 21, no. 7, pp. 881-896, 1987. https://doi.org/10.1002/jbm.820210705
[37] B. Kasemo and J. Lausmaa, "The biomaterial-tissue interface and its analogues in surface science and technology," The bone-biomaterial interface, University of Toronto press, Toronto, pp. 19-32, 1991. https://doi.org/10.3138/9781442671508-005
[38] M. Anke, B. Groppel, H. Kronemann, and M. Grün, "Nickel--an essential element," IARC scientific publications, vol. 1, no. 53, pp. 339-365, 1984.
[39] M. Szilagyi, M. Anke, and I. Balogh, "Effect of nickel deficiency on biochemical variables in serum, liver, heart and kidneys of goats," Acta veterinaria Hungarica, vol. 39, no. 3-4, pp. 231-238, 1991.
[40] H. Gerber, "Evalution of tissue compatibility of in vitro cultures of embryonic bone," Evalution of Biomaterials, 1980.
[41] C. B. Klein, K. Frenkel, and M. Costa, "The role of oxidative processes in metal carcinogenesis," Chemical research in toxicology , vol. 4, no. 6, pp. 592-604, 1991. https://doi.org/10.1021/tx00024a001
[42] C. B. Klein et al. , "Senescence of nickel-transformed cells by an X chromosome: possible epigenetic control," Science, vol. 251, no. 4995, pp. 796-799, 1991. https://doi.org/10.1126/science.1990442
[43] S. Shabalovskaya, J. Anderegg, F. Laab, P. Thiel, and G. Rondelli, "Surface conditions of Nitinol wires, tubing, and as‐cast alloys. The effect of chemical etching, aging in boiling water, and heat treatment," Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 65, no. 1, pp. 193-203, 2003. https://doi.org/10.1002/jbm.b.10001
[44] W. Carroll and M. Kelly, "Corrosion behavior of nitinol wires in body fluid environments," Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 67, no. 4, pp. 1123-1130, 2003. https://doi.org/10.1002/jbm.a.10099
[45] R. Senkutvan, S. Jacob, A. Charles, V. Vadgaonkar, S. Jatol-Tekade, and P. Gangurde, "Evaluation of nickel ion release from various orthodontic arch wires: An: in vitro: study," Journal of International Society of Preventive and Community Dentistry, vol. 4, no. 1, pp. 12-16, 2014. https://doi.org/10.4103/2231-0762.130921
[46] F. Ormiga, J. A. d. C. P. Gomes, and M. C. P. de Araújo, "Dissolution of nickel-titanium endodontic files via an electrochemical process: a new concept for future retrieval of fractured files in root canals," Journal of endodontics, vol. 36, no. 4, pp. 717-720, 2010. https://doi.org/10.1016/j.joen.2009.11.024
[47] D. A. Armitage, T. L. Parker, and D. M. Grant, "Biocompatibility and hemocompatibility of surface‐modified NiTi alloys," Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 66, no. 1, pp. 129-137, 2003. https://doi.org/10.1002/jbm.a.10549
[48] C. Barras and K. Myers, "Nitinol–its use in vascular surgery and other applications," European Journal of Vascular and Endovascular Surgery, vol. 19, no. 6, pp. 564-569, 2000. https://doi.org/10.1053/ejvs.2000.1111
[49] L. Millon and W. Wan, "The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications," Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 79, no. 2, pp. 245-253, 2006. https://doi.org/10.1002/jbm.b.30535
[50] S. A. Shabalovskaya, "On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys," Bio-medical materials and engineering, vol. 6, no. 4, pp. 267-289, 1996. https://doi.org/10.3233/BME-1996-6405
[51] D. Starosvetsky and I. Gotman, "Corrosion behavior of titanium nitride coated Ni–Ti shape memory surgical alloy," Biomaterials, vol. 22, no. 13, pp. 1853-1859, 2001. https://doi.org/10.1016/S0142-9612(00)00368-9
[52] B. O’Brien, W. Carroll, and M. Kelly, "Passivation of nitinol wire for vascular implants—a demonstration of the benefits," Biomaterials, vol. 23, no. 8, pp. 1739-1748, 2002. https://doi.org/10.1016/S0142-9612(01)00299-X
[53] S. Z. El Abedin, U. Welz-Biermann, and F. Endres, "A study on the electrodeposition of tantalum on NiTi alloy in an ionic liquid and corrosion behaviour of the coated alloy," Electrochemistry communications, vol. 7, no. 9, pp. 941-946, 2005. https://doi.org/10.1016/j.elecom.2005.06.007
[54] L. Li et al. , "Time-dependent corrosion behavior of electroless Ni–P coating in H2S/Cl− environment," International Journal of Hydrogen Energy, vol. 46, no. 21, pp. 11849-11864, 2021. https://doi.org/10.1016/j.ijhydene.2021.01.053
[55] R. Zhang, B. Han, and X. Liu, "Functional surface coatings on orthodontic appliances: Reviews of friction reduction, antibacterial properties, and corrosion resistance," International Journal of Molecular Sciences, vol. 24, no. 8, p. 6919, 2023. https://www.mdpi.com/1422-0067/24/8/6919
[56] Z. Li, M. A. Islam, Z. Farhat, and G. Jarjoura, "Enhanced Erosion–Corrosion Resistance of Nickel–Phosphorus–Nitinol Coating," Journal of Bio-and Tribo-Corrosion, vol. 8, no. 2, p. 45, 2022. https://doi.org/10.1007/s40735-022-00646-4
[57] C. I. Theodorou, A. M. Kuijpers-Jagtman, E. M. Bronkhorst, and F. A. Wagener, "Optimal force magnitude for bodily orthodontic tooth movement with fixed appliances: A systematic review," American Journal of Orthodontics and Dentofacial Orthopedics, vol. 156, no. 5, pp. 582-592, 2019. https://doi.org/10.1016/j.ajodo.2019.05.011
[58] I. B. Naceur, A. Charfi, and T. Bouraoui, "Finite element modeling of superelastic nickel–titanium orthodontic wires," Journal of biomechanics, vol. 47, no. 15, pp. 3630-3638, 2014. https://doi.org/10.1016/j.jbiomech.2014.10.007
[59] M. Greene, A. Rizkalla, T. Burkhart, A. Mamandras, and A. Tassi, "Friktion und Bogenkontakt bei modernen selbstligierenden Zahnspangensystemen: Ein In-vitro-Vergleich," Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopädie, vol. 84, pp. 1-9, 2023. https://doi.org/10.1007/s00056-021-00361-8
[60] T. Mathew, "The Loading and unloading properties of various arch wires as a function of cross-sectional dimension and inter bracket span width system," Malay Dent J, vol. 32, no. 1, pp. 29-41, 2011.
[61] M. N. Ahmadabadi, T. Shahhoseini, M. Habibi-Parsa, M. Haj-Fathalian, T. Hoseinzadeh-Nik, and H. Ghadirian, "Static and cyclic load-deflection characteristics of NiTi orthodontic archwires using modified bending tests," Journal of Materials Engineering and Performance, vol. 18, no. 5-6, p. 793, 2009. https://doi.org/10.1007/s11665-009-9488-5
[62] A. Munir, M. Hassan, N. Khairi, and M. Razali, "Assessment of the Force-Deflection Behavior of Aged NiTi Archwires in Various Inter-Bracket Distance Configurations," International Journal of Nanoelectronics and Materials (IJNeaM), vol. 16, no. December, pp. 361-369, 2023. https://doi.org/10.58915/ijneam.v16iDECEMBER.417
[63] I. Uysal, B. Yilmaz, A. O. Atilla, and Z. Evis, "Nickel titanium alloys as orthodontic archwires: A narrative review," Engineering Science and Technology, an International Journal, vol. 36, p. 101277, 2022. https://doi.org/10.1016/j.jestch.2022.101277
[64] M. T. Maliael and H. Babu, "Load deflection characteristics of copper nickel titanium orthodontic Archwires," International journal of health sciences, vol. 6, no. S6, pp. 4008-4016, 2022. https://doi.org/10.53730/ijhs.v6nS6.11562
[65]F. Bhat, N. Shetty, F. Khan, M. Bhat, and A. Husain, "Comparative evaluation of load-deflection property of different brands of nickel-titanium archwires," APOS Trends in Orthodontics, vol. 8, no. 2, pp. 92-92, 2018. https://doi.org/10.4103/apos.apos_32_18
[66] K. Tochigi, S. Oda, and K. Arai, "Influences of archwire size and ligation method on the force magnitude delivered by nickel-titanium alloy archwires in a simulation of mandibular right lateral incisor linguoversion," Dental Materials Journal, vol. 34, no. 3, pp. 388-393, 2015. https://doi.org/10.4012/dmj.2014-270
[67] A. Munir and M. Razali, "Force deflection behaviors of NiTi archwires at different bending conditions: A mini review," Proceeding of 5th International Conference on Advances in Manufacturing and Materials Engineering: ICAMME 2022 , 9—10 August, Kuala Lumpur, Malaysia, 2023, pp. 71-76. https://doi.org/10.1007/978-981-19-9509-5_10
[68] A. Nespoli, E. Villa, L. Bergo, A. Rizzacasa, and F. Passaretti, "DSC and three-point bending test for the study of the thermo-mechanical history of NiTi and NiTi-based orthodontic archwires: the material point of view," Journal of Thermal Analysis and Calorimetry, vol. 120, no. 2, pp. 1129-1138, 2015 . https://doi.org/10.1007/s10973-015-4441-3
[69] W. Elkhal Letaief, A. Fathallah, T. Hassine, and F. Gamaoun, "Finite element analysis of hydrogen effects on superelastic NiTi shape memory alloys: Orthodontic application," Journal of Intelligent Material Systems and Structures, vol. 29, no. 16, pp. 3188-3198, 2018. https://doi.org/10.1177/1045389X18754356
[70] E. Gatto, G. Matarese, G. Di Bella, R. Nucera, C. Borsellino, and G. Cordasco, "Load–deflection characteristics of superelastic and thermal nickel–titanium wires," The European Journal of Orthodontics, vol. 35, no. 1, pp. 115-123, 2013. https://doi.org/10.1093/ejo/cjr103
[71] H.-M. Hsu, K.-C. Chen, C.-J. Chang, T.-M. Lee, and J.-K. Liu, "Load-Deflection Behaviors of Superelastic NiTi Wires Using Two Bending Test Methods Including Passive Self-Ligating Brackets," Taiwanese Journal of Orthodontics, vol. 36, no. 1, p. 2, 2024. https://doi.org/10.38209/2708-2636.1353
[72] S. Dechkunakorn, R. Isarapatanapong, N. Anuwongnukroh, N. Chiranavanit, J. Kajorchaiyakul, and A. Khantachawana, "Mechanical properties of several NiTi alloy wires in three-point bending tests," Applied Mechanics and Materials, vol. 87, pp. 14-19, 2011. https://doi.org/10.4028/www.scientific.net/AMM.87.14
[73] D. J. Fernandes, C. N. Elias, R. Vidal, and A. d. M. Mendes, "Mechanical performance of nickel-titanium archwires," Materials Research, vol. 18, no. 6, pp. 1264-1277, 2015. https://doi.org/10.1590/1516-1439.003615
[74] A. Bhardwaj, M. Ojha, A. Garudapalli, and A. K. Gupta, "Microstructural, mechanical and strain hardening behaviour of NiTi alloy subjected to constrained groove pressing and ageing treatment," Journal of Materials Processing Technology, vol. 294, p. 117132, 2021. https://doi.org/10.1016/j.jmatprotec.2021.117132
[75] O. Benafan, G. Bigelow, and D. Scheiman, "Transformation behavior in NiTi-20Hf shape memory alloys–Transformation temperatures and hardness," Scripta Materialia, vol. 146, pp. 251-254, 2018. https://doi.org/10.1016/j.scriptamat.2017.11.050
[76] C. Yang, T. Liu, M. Zhong, Z. Wu, J. Deng, and Y. Du, "High recovery stress performance of NiTi shape memory alloy with a wide temperature window," Journal of Materials Engineering and Performance, vol. 32, no. 23, pp. 10956-10968, 2023. https://doi.org/10.1007/s11665-023-07886-6
[77] J. D. Silva, S. C. Martins, N. I. de Azevedo Lopes, P. D. Resende, L. A. Santos, and V. T. L. Buono, "Effects of aging treatments on the fatigue resistance of superelastic NiTi wires," Materials Science and Engineering: A, vol. 756, pp. 54-60, 2019. https://doi.org/10.1016/j.msea.2019.04.037
[78] S. Liu, J. Zhu, Y. Lin, G. Wang, and X. Wang, "Effect of stretching-bending deformation and aging treatment on phase transformation behavior and superelasticity of Ti-50.8 at.% Ni alloy," Intermetallics, vol. 129, p. 107051, 2021. https://doi.org/10.1016/j.intermet.2020.107051
[79] T. Yamazaki, A. L. Montagnoli, M. L. Young, and I. Takeuchi, "Tuning the temperature range of superelastic Ni-Ti alloys for elastocaloric cooling via thermal processing," Journal of Physics: Energy, vol. 5, no. 2, p. 024020, 2023. https://doi.org/10.1088/2515-7655/accd21
[80] H. Bellini, J. Moyano, J. Gil, and A. Puigdollers, "Comparison of the superelasticity of different nickel–titanium orthodontic archwires and the loss of their properties by heat treatment," Journal of Materials Science: Materials in Medicine, vol. 27, pp. 1-10, 2016. https://doi.org/10.1007/s10856-016-5767-5
[81] A. Munir, M. F. Razali, M. H. Hassan, and G. Franz, "Effect of short-term ageing treatment on bending force behavior of commercial nickel-titanium archwire," Materials, vol. 16, no. 3, p. 1008, 2023. https://doi.org/10.3390/ma16031008
[82] J. d. A. Gurgel, S. Kerr, J. M. Powers, and V. LeCrone, "Force-deflection properties of superelastic nickel-titanium archwires," American Journal of Orthodontics and Dentofacial Orthopedics, vol. 120, no. 4, pp. 378-382, 2001. https://doi.org/10.1067/mod.2001.117200
آمار
تعداد مشاهده مقاله: 172
تعداد دریافت فایل اصل مقاله: 136