Abraitis, P.K., Pattrick, R.A.D. and Vaughan, D.J., 2004. Variations in the compositional, textural and electrical properties of natural pyrite: a review. International Journal of Mineral Processing. 74(1–4): 41–59. https://doi.org/10.1016/j.minpro.2003.09.002
Agangi, A., Hofmann, A. and Przybyłowicz, W., 2014. Trace element zoning of sulfides and quartz at Sheba and Fairview gold mines: Clues to Mesoarchean mineralisation in the Barberton Greenstone Belt, South Africa. Ore Geology Reviews, 56: 94–114. https://doi.org/10.1016/j.oregeorev.2013.08.016
Amidi, S.M., Shahrabi, M. and Navai, I., 2004. Geological map of Zaviyeh. cale 1:100000. Geological Survey of Iran No. 6160.
Babazadeh, S., Haase, K., Ghalamghash, J., Regelous, M., Poujol, M., Raeisi, D. and Zhao, M., 2023. Magmatic evolution of the migrating central Urumieh–Dokhtar arc, Iran: Implications for magma production. International Journal of Earth Sciences, 112(5): 1577–1597. http://dx.doi.org/10.1007/s00531-023-02314-5
Bajwah, Z., Seccombe, P. and Offler, R., 1987. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineralium Deposita, 22: 292–300. http://dx.doi.org/10.1007/BF00204522
Boyle, R.W., 1979. The geochemistry of gold and its deposits. Geological Survey of Canada, Bull. 280. Retrieved March 6, 2025 from https://publications.gc.ca/site/eng/9.817728/publication.html
Bralia, A., Sabatini, G. and Troja, F., 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems: Mineralium Deposita, 14: 353–374. https://doi.org/10.1007/BF00206365
Brugger, J., Liu, W., Etschmann, B., Mei, Y., Sherman, D.M. and Testemale, D., 2016. A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? Chemical Geology, 447: 219–253. https://doi.org/10.1016/j.chemgeo.2016.10.021
Cao, G.S., Zhang, Y., Zhao, H.T., Cheng, J.M., Hao, J.Y., Lei, J.Z., Song, S.L. and Wang, X., 2023. Trace element variations of pyrite in orogenic gold deposits: Constraints from big data and machine learning. Ore Geology Review, 157: 105447. https://doi.org/10.1016/j.oregeorev.2023.105447
Ciobanu, C.L., Cook, N.J., Utsunomiya, S., Kogagwa, M., Green, L., Gilbert, S. and Wade, B., 2012. Gold-telluride nanoparticles revealed in arsenic-free pyrite. American Mineralogist, 97(8–9): 1515–1518. http://dx.doi.org/10.2138/am.2012.4207
Clark, A.H., 1970. Copper zoning in pyrite from Cerro De Pasco, Perú: Further discussion. American Mineralogist, 55(3–4, Part 1): 525–527. Retrieved March 6, 2025 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/55/3-4_Part_1/525/540621/Copper-zoning-in-pyrite-from-Cerro-De-Pasco-Peru
Cline, J.S., 2001. Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, north central Nevada. Economic Geology, 96(1): 75–89. https://doi.org/10.2113/gsecongeo.96.1.75
Cook, N.J. and Chryssoulis, S.L., 1990. Concentrations of invisible gold in the common sulfides. The Canadian Mineralogist, 28(1): 1–16. Retrieved March 6, 2025 from https://pubs.geoscienceworld.org/mac/canmin/article-abstract/28/1/1/12149/Concentrations-of-invisible-gold-in-the-common
Cook, N.J., Ciobanu, C.L., Meria, D., Silcock, D. and Wade, B., 2013. Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements. Economic Geology 108(6): 1273–1283. http://dx.doi.org/10.2113/econgeo.108.6.1273
Deditius, A.P., Reich, M., Kesler, S.E., Utsunomiya, S., Chryssoulis, S.L., Walshe, J. and Ewing, R.C., 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 140: 644–670. https://doi.org/10.1016/j.gca.2014.05.045
Deditius, A.P., Utsunomiya, S., Renock, D., Ewing, R.C., Ramana, C.V., Becker, U. and Kesler, S.E., 2008. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72(12): 2919–2933. http://dx.doi.org/10.1016/j.gca.2008.03.014
Dubosq, R., Lawley, J.M., Rogowitz, A., Schneider, D.A. and Jackson, S., 2018. Pyrite deformation and connections to gold mobility: Insight from micro-structural analysis and trace element mapping. Lithos, 310–311: 86–104. http://dx.doi.org/10.1016/j.lithos.2018.03.024
Einaudi, M.T., 1968. Copper zoning in pyrite from Cerro de Pasco, Peru. American. Mineralogist, 53: 1748–1752. Retrieved March 6, 2025 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/53/9-10/1748/542518/Copper-zoning-in-pyrite-from-Cerro-de-Pasco-Peru
Feng, Y.Z., Zhang, Y., Xie, Y.L., Shao, Y.J. and Lai, C.K., 2020. Pyrite geochemistry and metallogenic implications of Gutaishan Au deposit in Jiangnan Orogen, South China. Ore Geology Review, 117: 103298 https://doi.org/10.1016/j.oregeorev.2019.103298
Goudarzi, M., Zamanian, H., Klötzli, U., Lentz, D. and Ullah, M., 2025. Constraining Ore-Forming Processes Using Magnetite-Titanomagnetite Chemistry: A Case Study of the Mamuniyeh Cu Mineralization System, Urumieh-Dokhtar Magmatic Arc. Journal of Economic Geology, Articles in Press. (in Persian with English abstract) https://doi.org/10.22067/econg.2025.1125
Goudarzi, M., Zamanian, H. and Klötzli, U., 2024a. Geochemistry, petrography, and tectono-magmatic setting of Eocene volcanic lavas in the south of Mamoniyeh, Urumieh-Dokhtar magmatic arc, Markazi Province, Iran. Petrological Journal, 15(1): 85–116. https://doi.org/10.22108/ijp.2024.139861.1315
Goudarzi, M., Zamanian, H. and Klotzli, U., 2024b. Copper mineralization pattern based on mineralogy, alteration, geochemistry of intrusive rocks and fluid inclusion in the south of Mamuoniyeh, middle part of Urumieh-Dokhtar magmatic arc, Iran. Scientific Quarterly Journal of Geosciences, 34(3): 35–62. https://doi.org/10.22071/gsj.2024.424348.2122
Goudarzi, M., Zamanian, H., Klötzli, U., Lentz, D. and Ullah, M., 2024c. Genesis of the Mamuniyeh copper deposit in the central Urumieh-Dokhtar Magmatic Arc, Iran: Constraints from geology, geochemistry, fluid inclusions, and H–O–S isotopes. Ore Geology Reviews, 175: 106279. https://doi.org/10.1016/j.oregeorev.2024.106279
Goudarzi, M., Zamanian, H., Klötzli, U. and Ullah, M. 2024d. Evidence of boiling in ore-forming process based on quartz textures and fluid inclusions studies, a case study in Mamouniyeh Cu deposit, Iran, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8552. https://doi.org/10.5194/egusphere-egu24-8552
Gregory, D.D., Large, R.R., Bath, A.B., Steadman, J.A., Wu, S., Danyushevsky, L., Bull, S. W., Holden, P. and Ireland, T.R., 2016. Trace Element Content of Pyrite from the Kapai Slate, St. Ives Gold District, Western Australia. Economic Geology, 111(6): 1297–1320. http://dx.doi.org/10.2113/econgeo.111.6.1297
Gregory, D.D., Large, R.R., Halpin, J.A., Baturina, E.L., Lyons, T.W., Wu, S., Danyushevsky, L., Sack, P.J., Chappaz, A., Maslennikov, VV. and Bull, S.W., 2015. Trace element content of sedimentary pyrite in black shales. Economic Geology, 110(6): 1389–1410. https://doi.org/10.2113/econgeo.110.6.1389
Huerta-Diaz, M.A. and Morse, J.W., 1992. Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56(7): 2681–2702. https://doi.org/10.1016/0016-7037(92)90353-K
Huston, D.L., Sie, S.H., Suter, G.F., Cooke, D.R. and Both, R.A., 1995. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90(5): 1167–1196. https://doi.org/10.2113/gsecongeo.90.5.1167
Jansson, N.F. and Liu, W. 2020. Controls on cobalt and nickel distribution in hydrothermal sulphide deposits in Bergslagen, Sweden-constraints from solubility modelling. GFF, 142(2): 87–95. http://dx.doi.org/10.1080/11035897.2020.1751270
Keith, M., Haase, K.M., Chivas, A.R. and Klemd, R., 2022. Phase separation and fluid mixing revealed by trace element signatures in pyrite from porphyry systems. Geochimica et Cosmochimica Acta, 329: 185–205. http://dx.doi.org/10.1016/j.gca.2022.05.015
Keith, M., Smith, D.J., Jenkin, G.R.T., Holwell, D.A. and Dye, M.D., 2018. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geology Review, 96: 269–282. http://dx.doi.org/10.1016/j.oregeorev.2017.07.023
Koglin, N., Frimmel, H.E., Minter, W.E.L. and Br¨atz, H., 2010. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Mineralium. Deposita, 45: 259–280. http://dx.doi.org/10.1007/s00126-009-0272-0
Kouhestani, H., Ghaderi, M., Large, R.R. and Zaw, K., 2017. Texture and chemistry of pyrite at Chah Zard epithermal gold-silver deposit, Iran. Ore Geology Reviews, 84: 80–101. https://doi.org/10.1016/j.oregeorev.2017.01.002
Kusebauch, C., Oelze, M. and Gleeson, S.A., 2018. Partitioning of arsenic between hydrothermal fluid and pyrite during experimental siderite replacement. Chemical Geology, 500: 136–147. https://doi.org/10.1016/j.chemgeo.2018.09.027
Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B. and Foster, J., 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, 104(5): 635–668. http://dx.doi.org/10.2113/gsecongeo.104.5.635
Large, R.R., Halpin, J.A., Danyushevsky, L.V., Maslennikov, V.V., Bull, S.W., Long, J.A., Gregory, D.D., Lounejeva, E., Lyons, T.W., Sack, P.J., McGoldrick, P.J. and Calver, C.R., 2014. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth and Planetary Science Letters, 389: 209–220. http://dx.doi.org/10.1016/j.epsl.2013.12.020
Liang, J.-L., Sun, W.-D., Li, Y.-L., Zhu, S.-Y., Li, H., Liu, Y.-L. and Zhai, W., 2013. An XPS study on the valence states of arsenic in arsenian pyrite: Implications for au deposition mechanism of the Yang-shan Carlin-type gold deposit, western Qinling belt. Journal of Asian Earth Science, 62: 363–372. http://dx.doi.org/10.1016/j.jseaes.2012.10.020
Liu, W., Migdisov, A. and Williams-Jones, A. 2012. The stability of aqueous nickel (II) chloride complexes in hydrothermal solutions: results of UV–Visible spectroscopic experiments. Geochimica et Cosmochimica Acta, 94: 276–290. http://dx.doi.org/10.1016/j.gca.2012.04.055
Loftus-Hills, G. and Solomon, M., 1967. Cobalt, nickel and selenium in sulfides as indicators of ore genesis. Mineralum Deposita 2(3): 228–242. https://doi.org/10.1007/bf00201918
Martin, A.J., McDonald, I., Jamieson, J., Jenkin, G.R.T., McFall, K.A., Piercey, G., MacLeod, C.J. and Layne, G.D., 2022. Mineral-scale variation in the trace metal and sulfur isotope composition of pyrite: Implications for metal and sulfur sources in mafic VMS deposits. Mineralium Deposita, 57: 911–933. Retrieved March 6, 2025 from https://link.springer.com/article/10.1007%2Fs00126-021-01080-1
Migdisov, A.A., Zezin, D. and Williams-Jones, A.E., 2011. An experimental study of cobalt (II) complexation in Cl- and H2-S-bearing hydrothermal solutions. Geochimica et Cosmochimica Acta, 75(14): 4065–4079. http://dx.doi.org/10.1016/j.gca.2011.05.003
Morse, J. W., Luther. G.W., 1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63: 19–20. https://doi.org/10.1016/S0016-7037(99)00258-6
Niu, S.D., Li, S.R., Santosh, M., Zhang, D.H., Li, Z.D., Shan, M.J., Lan, Y.X., Gao, D.R. and Zhao, W.B., 2016. Mineralogical and isotopic studies of base metal sulfides from the Jiawula Ag–Pb–Zn deposit, Inner Mongolia, NE China. Journal of Asian Earth Sciences,115: 480–491. https://doi.org/10.1016/j.jseaes.2015.10.020
Nogol Sadat, A. and Houshmandzadeh, A., 1984. 1: 250,000 Geological map of Saveh. Geological Survey of Iran.
Nouri, N., Azizi, H., Stern, R., Asahara, Y., Khodaparast, S., Madanipour, S. and Yamamoto, K. 2018. Zircon U-Pb dating, geochemistry and evolution of the Late Eocene Saveh magmatic complex, central Iran: Partial melts of sub-continental lithospheric mantle and magmatic differentiation. Lithos, 314–315: 274–292. https://doi.org/10.1016/j.lithos.2018.06.013
Pacevski, A., Libowitzky, E., Zivkovic, P., Dimitrijevic, R. and Cvetkovic, L., 2008. Copper-bearing pyrite from the Coka Marin polymetallic deposit, Serbia: Mineral inclusions or true solid-solution? The Canadian Mineralogist, 46(1): 249–261. http://dx.doi.org/10.3749/canmin.46.1.249
Palenik, C.S., Utsunomiya, S., Reich, M., Kesler, S.E., Wang, L. and Ewing, R.C., 2004. "Invisible" gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit. American Mineralogist, 89(10): 1359–1366. https://doi.org/10.2138/am-2004-1002
Palme, H. and O’Neill, H.S.C., 2003. Cosmochemical estimates of mantle composition. Treatise on Geochemistry, 2: 1–38. http://dx.doi.org/10.1016/B0-08-043751-6/02177-0
Real, I.D., Thompson, J.F.H., Simon, A.C. and Reich, M., 2020. Geochemical and isotopic signature of pyrite as a proxy for fluid source and evolution in the Candelaria-Punta del Cobre iron oxide copper-gold district, Chile. Economic Geology, 115(7): 1493–1517. https://doi.org/10.5382/econgeo.4765
Reich, M., Deditius, A., Chryssoulis, S., Li, J.W., Ma, C.Q., Parada, M.A., Barra, F. and Mittermayr, F., 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta, 104: 42–62. https://doi.org/10.1016/j.gca.2012.11.006
Reich, M., Simon, A.C., Deditius, A., Barra, F., Chryssoulis, S., Lagas, G., Tardani, D., Knipping, J., Bilerker, L., Sanchez-Alfaro, P., Roberts, M.P. and Munizaga, R., 2016. Trace element signature of pyrite from the Los Colorados Iron Oxide-Apatite (IOA) deposit, Chile: a missing link between Andean IOA and Iron Oxide Copper-Gold systems? Economic Geology, 111(3): 743–761. https://doi.org/10.2113/econgeo.111.3.743
Rezaei Kahkhaei, M., Esmaili, D. and Francisco, C.G., 2014. Geochemical and isotopic (Nd and Sr) constraints on elucidating the origin of intrusions from northwest Saveh, Central Iran. Geopersia, 4(1): 103–123. https://doi.org/10.22059/jgeope.2014.51195
Rudnick, R.L. and Gao. S., 2014. Composition of the Continental Crust, Heinrich D. Holland and K.K. Turekian (Editors), Treatise on Geochemistry (Second Edition), Elsevier, V. 14, PP. 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
Saravanan Chinnasamy, S., Hazarika, P., Pal, D., Sen, R. and Govindaraj, G., 2021. Pyrite textures and trace element compositions from the granodiorite-hosted gold deposit at Jonnagiri, Eastern Dharwar Craton, India: Implications for gold mineralization processes. Economic Geology, 116(3): 559–579. http://dx.doi.org/10.5382/econgeo.4787
Song, K.R., Tang, L., Zhang, S.T., Santosh, M., Spencer, C.J., Zhao, Y., Li, H.X., Wang, L., Zhang, A.L. and Sun, Y.Q., 2019. Genesis of the Bianjiadayuan Pb–Zn polymetallic deposit, Inner Mongolia, China: Constraints from in-situ sulfur isotope and trace element geochemistry of pyrite. Geoscience Frontiers, 10(5): 1863–1877. https://doi.org/10.1016/j.gsf.2019.02.004
Sykora, S., Cooke, D.R., Meffre, S., Stephanov, A.S., Gardner, K., Scott, R., Selley, D. and Harris, A.C., 2018. Evolution of Pyrite Trace Element Compositions from Porphyry-style and Epithermal Conditions at the Lihir Gold Deposit: Implications for Ore Genesis and Mineral Processing. Economic Geology, 113(1): 193–208. http://dx.doi.org/10.5382/econgeo.2018.4548
Tian, Y., Etschmann, B., Liu, W., Borg, S., Mei, Y., Testemale, D., Oneill, B., Rae, D., Sherman, M., Ngothai, Y., Johannessen, B., Glover, C. nd Brugger, J., 2012. Speciation of nickel (II) chloride complexes in hydrothermal fluids: in situ XAS study. Chemical Geology, 334: 345–363. http://dx.doi.org/10.1016/j.chemgeo.2012.10.010
Tribovillard, N., Algeo, T.J., Lyons, T. and Riboulleau, A., 2006. Trace metals as paleo redox and paleoproductivity proxies: An update. Chemical Geology, 232(1–2): 12–32. http://dx.doi.org/10.1016/j.chemgeo.2006.02.012
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Wu, Y.-F., Fougerouse, D., Evans, K., Reddy, S.M., Saxey, D.W., Guagliardo, P. and Li, J.-W., 2019. Gold, arsenic, and copper zoning in pyrite: a record of fluid chemistry and growth kinetics. Geology, 47(7): 641–644. https://doi.org/10.1130/G46114.1
Yan, Y.T., Li, S.R., Jia, B.J., Zhang, N. and Yan, L.N., 2012. Composition Typomorphic Characteristics of Pyrite in Various Genetic Type Gold Deposits. Advanced Materials Research, 463-464: 25–29. (in Chinese with English abstract) https://doi.org/10.4028/www.scientific.net/AMR.463-464.25
Yuan, Y.B., Yuan, S.D., Zhao, P.L. and Zhang, D.L., 2018. Properties and evolution of granitic magma in the Huangshaping polymetallic deposit, southern Hunan: their constraints to mineralization differences. Acta Petrologica Sinica. 34(9): 2565–2580. Retrieved March 6, 2025 from http://www.ysxb.ac.cn/en/article/id/5ff2d0bcbfedb51e1a6ae2dd
Zhang, J.K., Shao, Y.J., Liu, Z.F. and Chen, K., 2022. Sphalerite as a record of metallogenic information using multivariate statistical analysis: Constraints from trace element geochemistry. Journal of Geochemical Exploration, 232: 106883. https://doi.org/10.1016/j.gexplo.2021.106883
Zhao, H.X., Frimmel, H.E., Jiang, S.Y. and Dai, B.Z., 2011. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis. Ore Geology Reviews, 43(1): 142–153. http://dx.doi.org/10.1016/j.oregeorev.2011.07.006
Zhao, Y.H., Tian, H., Li, J., Chen, S.Y. and Zhao, J.N., 2022. Constraints on the genesis of the Laochang Pb–Zn ore, Gejiu district, Yunnan: evidence from sulfide trace element and isotope geochemistry. Ore Geology Reviews, 150: 105162. https://doi.org/10.1016/j.oregeorev.2022.105162
Zhong, R., Brugger, J., Chen, Y. and Li, W. 2015. Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chemical Geology, 395: 154–164. http://dx.doi.org/10.1016/j.chemgeo.2014.12.008
Zhu, Z.Y., Cook, N., Yang, T., Ciobanu, C., Zhao, K.D. and Jiang, S.Y., 2016. Mapping of sulfur isotopes and trace elements in sulfides by LA-(MC)-ICP-MS: Potential analytical problems, improvements and implications. Minerals, 6(4): 110. https://doi.org/10.3390/min6040110