- Ahola, J. K., Sharpe, L. R., Dorton, K. L., Burns, P. D., Stanton, T. L., & Engle, T. E. (2005). Effects of lifetime copper, zinc, and manganese supplementation and source on performance, mineral status, immunity, and carcass characteristics of feedlot cattle. The Professional Animal Scientist, 21(4), 305-317. https://doi.org/10.15232/S1080-7446(15)31222-5
- Asadi, M., Toghdory, A., Ghoorchi, T., & Hatami, M. (2024). The effect of maternal organic manganese supplementation on performance, immunological status, blood biochemical and antioxidant status of Afshari ewes and their newborn lambs in transition period. Journal of Animal Physiology and Animal Nutrition, 108, 493–499. https://doi.org/10.1111/jpn.13909
- Asadi, M., Toghdory, A., Ghoorchi, T., & Hatami, M. (2023). Influence of organic manganese supplementation on performance, digestibility, milk yield and composition of Afshari ewes in the transition period, and the health of their lambs. Animal Production Research, 12(1), 1-12. https://doi.org/10.22124/AR.2023.23808.1752
- Asadi, M., Toghdory, A., Hatami, M., & Ghassemi Nejad, J. (2022). Milk supplemented with organic iron improves performance, blood hematology, iron metabolism parameters, biochemical and immunological parameters in suckling Dalagh lambs. Animals, 12, 510. https://doi.org/10.3390/ani12040510
- Asadi, M., Toghdory, A., Ghoorchi, T., & Kargar, S. (2019). Effect of physical form of the concentrate and buffer type on the rumen and blood parameters and microbial protein synthesis in fattening Dalagh lamb. Animal Science Journal (Pajouhesh and Sazandegi), 32(122), 143-158. (In Persian).
- Baly, C. L., Lonnerdal, D. L., & Keen, B. (1985). Effects of high doses of manganese on carbohydrate homeostasis. Toxicology Letters, 25, 95–102. https://doi.org/10.1016/0378-4274(85)90106-7
- Baly, D. L., Curry, D. L., Keen, C. L., & Hurley, L. S. (1984). Effect of manganese deficiency on insulin secretion and carbohydrate homeostasis in rats. The Journal of Nutrition, 114, 1438–1446. https://doi.org/10.1093/jn/114.8.1438
- Davis, C. D., Ney, D. M., & Greger, J. L. (1990). Manganese, iron and lipid interactions in rats. The Journal of Nutrition, 120, 507–513. https://doi.org/10.1093/jn/120.5.507
- El Ashry, G. M. E., Hassan, A. A. M., & Soliman, S. M. (2012). Effect of feeding a combination of zinc, manganese and copper methionine chelates of early lactation high producing dairy cow. Food and Nutrition Sciences, 03, 1084–1091. https://doi.org/10.4236/fns.2012.38144
- George, M. H., Nockels, C. F., Stanton, T. L., Johnson, B., Cole, N. A., & Brown, M. A. (1997). Effect of source and amount of zinc, copper, manganese, and cobalt fed to stressed heifers on feedlot performance and immune function. The Professional Animal Scientist, 13, 84–89. https://doi.org/10.15232/S1080-7446(15)31850-7
- Gholami, V., Amanlou, H., Zahmatkesh, D., & Sadeghi, N. (2021). Effect of high dietary zinc, copper and manganese concentration and source on plasma progesterone and reproductive performance in repeat breeder cows. Iranian Journal of animal Science, 51(4), 263-273. (In Persian). https://doi.org/10.22059/ijas.2020.305609.653786
- Goff, J. P. (2017). Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. Journal of Animal Science, 101, 2763–2813. https://doi.org/10.3168/jds.2017-13112
- Gresakova, L.,Venglovska, K., & Cobanova, K. (2016). Dietary manganese source does not affect Mn, Zn and Cu tissue deposition and the activity of manganese-containing enzymes in lambs. Journal of Trace Elements in Medicine and Biology, 38, 138-143. http:// doi.org/10.1016/j.jtemb.2016.05.003
- Hansen, S. L., Spears, J. W., Lloyd, K. E., & Whisnant, C. S. (2006). Growth, reproductive performance, and manganese status of heifers fed varying concentrations of manganese. Journal of Animal Science, 84, 3375–3380. https://doi.org/10.2527/jas.2005-667
- Henry, P. R., Ammerman, C. B., & Litell, R. C. (1992). Relative bioavailability of manganese from a manganese-methionine complex and inorganic sources for ruminant. Journal of Dairy Science, 75, 3473-3478. https://doi.org/10.3168/jds.S0022-0302(92)78123-5
- Ivan, M., & Hidiroglou, M. (1980). Effect of dietary manganese on growth and manganese metabolism in sheep. Journal of Dairy Science, 63, 385–390. https://doi.org/10.3168/jds.S0022-0302(80)82944-4
- Kasiani, A., Rezayazdi, K., & Zhandi, M. (2021). Effects of replacing inorganic forms of manganese, zinc, copper and selenium with their organic source on growth performance of suckling Holstein calves. Journal of Ruminant Research, 9(1), 55-68. (In Persian). https://doi.org/10.22069/ejrr.2020.18424.1764
- Kerkaert, H. R., Woodworth, J. C., Derouchey, J. M., Dritz, S. S., Tokach, M. D., Goodband, R. D., & Manzke, N. E. (2021) Determining the effects of manganese source and level on growth performance and carcass characteristics of growing-finishing pigs. Translational Animal Science, 13(5), txab067. https://doi.org/10.1093/tas/txab067
- Legleiter, L. R., Spears, J. W., & Lloyd, K. E. (2005) Influence of dietary manganese on performance, lipid metabolism, and carcass composition of growing and finishing steers. Journal of Animal Science, 83, 2434–2439. https://doi.org/10.2527/2005.83102434x
- Lu, H., Wu, W., Zhao, X., Abbas, M. W., Liu, S., Hao, L., & Xue, Y. (2023). Effects of diets containing different levels of copper, manganese, and iodine on rumen fermentation, blood parameters, and growth performance of Yaks. Animals, 13, 2651. https://doi.org/10.3390/ani13162651
- Makov´a, Z., Faixov´a, Z., Tarabov´a, L., Pieˇsov´a, E., Venglovsk´a, K., ˇCobanov´a, K., Greˇs´akov´a, L., & Faix, S. (2019). Effects of different dietary manganese sources on thickness of mucus layer and selected biochemical and haematological indicators in sheep. Acta Veterinaria Brno, 87, 351–356. https://doi.org/10.2754/avb201887040351
- Masella, R., Di Benedetto, R., Varì, R., Filesi, C., & Giovannini, C. (2005). Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione‐related enzymes. The Journal of Nutritional Biochemistry, 16, 577–586. https://doi.org/10.1016/j.jnutbio.2005.05.013
- MatÉs, J. M., Pérez‐Gómez, C., & De Castro, I. N. (1999). Antioxidant enzymes and human diseases. Clinical Biochemistry, 32, 595–603. https://doi.org/10.1016/s0009-9120(99)00075-2
- McDowell, L. R. (2005). Minerals for grazing ruminants in tropical regions, No. Ed.4, v + 86 pp. Center for Tropical Agriculture, University of Florida, Gainesville, Florida, USA.
- McDowell, L. R. (2003). Minerals in Animal and Human Nutrition (2nd Ed.). Netherlands: Elsevier Science B. V., Amsterdam.
- McFarlane, J. M., Morris, G. L., Curtis, S. E., Simon, J., & McGlone, J. J. (1988). Some indicators of welfare of crated veal calves on three dietary iron regimens. Journal of Animal Science, 66(2), 317-325. https://doi.org/10.2527/jas1988.662317x
- Meng, T., Gao, L., Xie, C., Xiang, Y. K., Huang, Y. Q., & Zhang, Y. W. (2021). Manganese methionine hydroxy analog chelated affects growth performance, trace element deposition and expression of related transporters of broilers. Animal Nutrition, 7, 481–487. https://doi.org/10.1016/j.aninu.2020.09.005.
- Moazeni Zadeh, M. H., Towhidi, A., Zhandi, M., & Rezayazdi, K. (2023). Effects of supplementation of some trace minerals on growth performance, biochemical, enzymatic, antioxidant, hormonal and hematological parameters in Holstein suckling calves. Journal of Ruminant Research, 11(1), 75-92. (In Persian). https://doi.org/10.22069/ejrr.2022.20590.1863
- Overton, T. R., & Yasui T. (2014). Practical applications of trace minerals for dairy cattle. Journal of Animal Science, 92, 416-426. https://doi.org/10.2527/jas.2013-7145
- Qashqai, H., Amanlou, H., Farahani, T. A., Farsuni, N. E., & Bakhtiary, M. K. (2020). Effects of supplemental manganese on ovarian cysts incidence and reproductive performance in early lactation Holstein cows. Animal Feed Science and Technology, 269, 114660. https://doi.org/10.1016/j.anifeedsci.2020.114660
- Rognstad, R. (1981) Manganese effects of gluconeogenesis. Journal of Biological Chemistry, 256, 1608–1610. https://doi.org/10.1016/s0021-9258(19)69849-2
- Roshanzamir, H., Rezaei, J., & Fazaeli, H. (2023). Effect of using organic complexes of Mn, Zn and Cu (compound with glycine- or methionine-) instead of sulphate forms (equal to or twice NRC recommendation) on health, fertility and blood metabolites of dairy cows and calves. Animal Production Research, 8(1), 1-15. (In Persian). https://doi.org/10.22124/ar.2019.11272.1343
- Ryan, A. W., Kegley, E. B., Hawley, J., Powell, J. G., Hornsby, J. A., Reynolds, J. L., & Laudert, S. B. (2015). Supplemental trace minerals (zinc, copper, and manganese) as sulfates, organic amino acid complexes, or hydroxy trace-mineral sources for shipping-stressed calves. The Professional Animal Scientist, 31(4), 333-341. https://doi.org/10.15232%2Fpas.2014-01383
- Sandhage, M. E., Albright, J. L., Van Dame, L. M., & Walker, S. C. (1983). Veal calf behavior in standard wooden crates. American Dairy Sciense Assocation. 78th Annual Meeting University of Wisconsin, Madison. p. 48.
- Sansom, B. F., Symonds, H. W., & Vago, M. J. (1978). The absorption of dietary manganese by dairy cows. Research in Veterinary Science, 24, 366–369. https://doi.org/10.1016/S0034-5288(18)33049-2
- Siciliano, J. L., Socha, M. T., Tomlinson, D. J., & Defrain, J. M. (2008). Effect of trace mineral source on lactation performance, claw integrity and fertility of dairy cattle. Journal of Dairy Science, 91(5), 1985–1995. https://doi.org/10.3168/jds.2007-0779
- Shakweer, I., Mustafa, G., Ahmed, G., & Ismail M. (2010) Effect of zinc or/and manganese methionine supplements on performance of lactating buffaloes. Journal of Animal and Poultry Production, 1, 589–602. https://doi.org/10.21608/jappmu.2010.86271
- Spears, J. W. (2019). Boron, chromium, manganese, and nickel in agricultural animal production. Biological Trace Element Research, 188, 35–44. https://doi.org/10.1007/s12011-018-1529-1
- Suttle, N. (2010). Mineral Nutrition of Livestock, 4th edition. CAB International, Wallingford, United Kingdom, p. 579.
- Teixeira, A. G. V., Lima, F. S., Bicalho, M. L. S., Kussler, A., Lima, S. F., Felippe, M. J., & Bicalho, R. C. (2014). Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on immunity, health, and growth of dairy calves. Journal of Dairy Science, 97(7), 4216-4226. https://doi.org/10.3168/jds.2013-7625
- Toghdory, A., Asadi, M., Ghoorchi, T., & Hatami, M. (2023). Impacts of organic manganese supplementation on blood mineral, biochemical, and hematology in Afshari Ewes and their newborn lambs in the transition period. Journal of Trace Elements in Medicine and Biology, 79, 127215. https://doi.org/10.1016/j.jtemb.2023.127215
- Tolbert, M. E. M., Kamalu, J. A., & Draper, G. D. (1981). Effects of cadmium, zinc, copper and manganese on hepatic parenchymal cell gluconeogenesis. Journal of Environmental Science and Health Part B, 16, 575–585. https://doi.org/10.1080/03601238109372280
- Van Putten, G., & Elshof, W. Y. (1982). The lying behaviour of veal calves up to 220 kg. In Welfare and Husbandry of Calves (pp. 83-97). Martinus Nijhoff the Hague, Boston, London.
- Webster, A. J. F., & Saville, C. (1982). The effect of rearing systems on the development of behaviour in calves. In Welfare and Husbandry of Calves (pp. 168-179). Martinus Nijhoff the Hague.
- Winters, T. A., Allrich, R. D., Albright, J. L., Walker, S. C., & Sandhage, M. E. (1984). Behavior and cortisol measurement in veal calves reared under commercial conditions. Journal of Animal Science, 59(Suppl. 1), 148.
|