- Abdallah, A. G., Khalil, H. M., El-Sahn, A. A., El-Saadany, A. S., Shreif, E. Y., & El-Salam, A. (2014). Effect of supplementing organic minerals (zinc, manganese, iron, copper and selenium) on productive, reproductive and immune performance of Gimmizah chickens. Egyptian Poultry Science Journal, 34(4).
- Aksu, T., Ozsoy, B., Aksu, D., Yörük, M., & Gül, M. (2011). The effects of lower levels of organically complexed zinc, copper and manganese in broiler diets on performance, mineral concentration of tibia and mineral excretion. Kafkas Universitesi Veteriner Fakultesi Dergisi, 17, 141-146. https://doi.org/10.9775/kvfd.2010.2735
- Asmundson, V. S., & Baker, G. A. (1940). Percentage shell as a function of shell thickness, egg volume, and egg shape. Poultry Science, 19(4), 227-232. http://org/10.3382/ps.0190227
- Bao, Y. M., Choct, M., Iji, P. A., & Bruerton, K. (2007). Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. Journal of Applied Poultry Research, 16(3), 448-455. http://org/10.1093/japr/16.3.448
- Bao, Y. M., Choct, M., Iji, P. A., & Bruerton, K. (2009). Optimal dietary inclusion of organically complexed zinc for broiler chickens. British Poultry Science, 50(1), 95-102. http://org/10.1080/00071660802590377
- Beattie, J. H., & Avenell, A. (1992). Trace element nutrition and bone metabolism. Nutrition Research Reviews, 5(1), 167-188. http://doi.org/10.1079/NRR19920013
- Deo, C., Mandal, A. B., & Tyagi, P. K. (2018). Response of supplementary sources and levels of copper in diet on the performance of broiler chickens. Animal Nutrition and Feed Technology, 18(1), 89-96. http://10.5958/0974-181X.2018.00008.2
- Dobrzañski, Z., Korczyñski, M., Chojnacka, K., Górecki, H., & Opaliñski, S. (2008). Influence of organic forms of copper, manganese and iron on bioaccumulation of these metals and zinc in laying hens. Journal of Elementology, 13(3), 309-319.
- Echeverry, H., Yitbarek, A., Munyaka, P., Alizadeh, M., Cleaver, A., Camelo-Jaimes, G., & Rodriguez-Lecompte, J. C. (2016). Organic trace mineral supplementation enhances local and systemic innate immune responses and modulates oxidative stress in broiler chickens. Poultry Science, 95(3), 518-527. http://org/10.3382/ps/pev374
- El-Husseiny, O. M., Hashish, S. M., Ali, R. A., Arafa, S. A., Abd El-Samee, L. D., & Olemy, A. A. (2012). Effects of feeding organic zinc, manganese and copper on broiler growth, carcass characteristics, bone quality and mineral content in bone, liver and excreta. International Journal of Poultry Science, 11(6), 368. https://doi.org/10.3923/ijps.2012.368.377
- Ghasemi, H. A., Hajkhodadadi, I., Hafizi, M., Taherpour, K., & Nazaran, M. H. (2020). Effect of advanced chelate technology based trace minerals on growth performance, mineral digestibility, tibia characteristics, and antioxidant status in broiler chickens. Nutrition and Metabolism, 17, 1-12. http://doi.org/10.1186/s12986-020-00520-5
- Gordon, R. W., & Roland Sr, D. A. (1998). Influence of supplemental phytase on calcium and phosphorus utilization in laying hens. Poultry Science, 77(2), 290-294. http://doi.org/10.1093/ps/77.2.290
- Hajilari, D., Shams Shargh, M., & Ashayerizade, O. (2019). Effects of various levels of organic and inorganic trace minerals on performance, carcass characteristics and blood parameters of broiler chickens. Animal Sciences Journal, 32(124), 3-16. http://org/10.22092/asj.2018.121016.1655
- Hussein, H. A., & Staufenbiel, R. (2012). Variations in copper concentration and ceruloplasmin activity of dairy cows in relation to lactation stages with regard to ceruloplasmin to copper ratios. Biological Trace Element Research, 146, 47-52. http://doi.org/10.1007/s12011-011-9226-3
- Kocabagli, N. (2001). The effect of dietary phytase supplementation at different levels on tibial bone characteristics and strength in broilers. Turkish Journal of Veterinary and Animal Sciences, 25(5), 797-802.
- Kong, J., Qiu, T., Yan, X., Wang, L., Chen, Z., Xiao, G., & Zhang, H. (2022). Effect of replacing inorganic minerals with small peptide chelated minerals on production performance, some biochemical parameters and antioxidant status in broiler chickens. Frontiers in Physiology, 13, 1027834. http://org/10.3389/fphys.2022.1027834
- Liu, J. F., Jiang, G. B., & Feng, Y. D. (2000). Flow injection spectrophotometric determination of copper, iron, manganese, and zinc in animal feeds using a common manifold. Journal of AOAC International, 83(6), 1293-1298. http://org/10.1093/jaoac/83.6.1293
- M'Sadeq, S. A., Wu, S. B., Choct, M., & Swick, R. A. (2018). Influence of trace mineral sources on broiler performance, lymphoid organ weights, apparent digestibility, and bone mineralization. Poultry Science, 97(9), 3176-3182. http://dorg/10.3382/ps/pey197
- Nollet, L., Van der Klis, J. D., Lensing, M., & Spring, P. (2007). The effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion. Journal of Applied Poultry Research, 16(4), 592-597. http://dorg/10.3382/japr.2006-00115
- Olgun, O. (2017). Manganese in poultry nutrition and its effect on performance and eggshell quality. World's Poultry Science Journal, 73(1), 45-56. http://org/10.1017/S0043933916000891
- Olivares, M., Pizarro, F., & Ruz, M. (2007). Zinc inhibits nonheme iron bioavailability in humans. Biological Trace Element Research, 117, 7-14.http://.org/10.1007/BF02698079
- Salim, H. M., Lee, H. R., Jo, C., Lee, S. K., & Lee, B. D. (2012). Effect of sex and dietary organic zinc on growth performance, carcass traits, tissue mineral content, and blood parameters of broiler chickens. Biological Trace Element Research, 147, 120-129. http://org/10.1007/s12011-011-9282-8
- Suttle, N. F. (2022). Mineral Nutrition of Livestock. Cabi. 194. http://org/10.1079/9781845934729.0000
- tom Dieck, H., Doring, F., Roth, H. P., & Daniel, H. (2003). Changes in rat hepatic gene expression in response to zinc deficiency as assessed by DNA arrays. The Journal of Nutrition, 133(4), 1004-1010. http://doi.org/10.1093/jn/133.4.1004
- Vieira, R., Ferket, P., Malheiros, R., Hannas, M., Crivellari, R., Moraes, V., & Elliott, S. (2020). Feeding low dietary levels of organic trace minerals improves broiler performance and reduces excretion of minerals in litter. British Poultry Science, 61(5), 574-582. http://org/10.1080/00071668.2020.1764908
- Winiarska-Mieczan, A., Mieczan, T., & Wójcik, G. (2020). Importance of redox equilibrium in the pathogenesis of psoriasis—impact of antioxidant-rich diet. Nutrients, 12(6), 1841. https://doi.org/10.3390/nu12061841
- Wołonciej, M., Milewska, E., & Roszkowska-Jakimiec, W. (2016). Trace elements as an activator of antioxidant enzymes. Advances in Hygiene and Experimental Medicine, 70, 1483-1498. https://doi.org/10.5604/17322693.1229074
- Zhu, Z., Yan, L., Hu, S., An, S., Lv, Z., Wang, Z., & Zhang, A. (2019). Effects of the different levels of dietary trace elements from organic or inorganic sources on growth performance, carcass traits, meat quality, and faecal mineral excretion of broilers. Archives of Animal Nutrition, 73(4), 324-337. http://org/10.1080/1745039X.2019.1620050
|