- Abouammoh, A. M., Abdulghani, S. A., and Qamber, I. S. (1994). On partial orderings and testing of new better than renewal used classes. Reliability Engineering & System Safety, 43, 407 37–41.
- Al-Kadim, K. A., and Mahdi, A. A. (2018). Exponentiated transmuted exponential distribution. Journal of University of Babylon for Pure and Applied Sciences, 26, 78–90.
- Bhutani, M. A. N. I. S. H. A., Kochupillai, V. I. N. O. D., and Bakshi, S. (2004). Childhood acute lymphoblastic leukemia: Indian experience. Indian J Med Paediatr Oncol, 20, 3–8.
- Bonferroni, C. E. (1941). Elementi di Statistica Generale. Gili, Torino.
- Bowley, A. L. (1926). Elements of Statistics. P. S. King & Son Ltd, London.
- Elbatal, I., Diab, L. S., and Alim, N. A. (2013). Transmuted generalized linear exponential distribution. International Journal of Computer Applications, 83, 29–37.
- Gupta, R. C., Gupta, P. L., and Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics-Theory and Methods, 27, 887–904.
- Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., and Thun, M. J. (2007). Cancer statistics, 2007. CA: A Cancer Journal for Clinicians, 57, 43–66.
- Khan, M. S., King, R., and Hudson, I. (2013). Characterizations of the transmuted inverse Weibull distribution. Anziam Journal, 55, C197–C217.
- Kumar, D., Singh, U., and Singh, S. K. (2015). A method of proposing new distribution and its application to Bladder cancer patients data. Journal of Statistics Applications and Probability Letters, 2, 235–245.
- Lee, E. T. (1992) Statistical Methods for Survival Data Analysis, 2nd Edition, Wiley Inter science, New York.
- Lee, E. T and Wang, J. (2003). Statistical Methods for Survival Data Analysis. John Wiley & Sons, New York.
- Lorenz, M. O (1905). Methods of measuring the concentration of wealth. Publications of the American Statistical Association, 9, 209–219.
- Maurya, S. K., Kaushik, A., Singh, R. K., Singh, S. K., and Singh, U. (2016). A new method of proposing distribution and its application to real data. Imperial Journal of Interdisciplinary Research, 2, 1331–1338.
- Mehrotra, R., and Yadav, K. (2022). Breast cancer in India: Present scenario and the challenges ahead. World Journal of Clinical Oncology, 13, 209.
- Moors, J. J. A. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician), 37, 25–32.
- Owoloko, E. A., Oguntunde, P. E., and Adejumo, A. O. (2015). Performance rating of the transmuted exponential distribution: an analytical approach. SpringerPlus, 4, 818.
- Prakash, G., Pal, M., Odaiyappan, K., Shinde, R., Mishra, J., Jalde, D., ... & Bakshi, G. (2019). Bladder cancer demographics and outcome data from 2013 at a tertiary cancer hospital in India. Indian Journal of Cancer, 56, 54–58.
- Rényi, A. (1961). On measures of entropy and information. In Proceedings of the fourth Berkeley Symposium on Mathematical Statistics and Probability, Contributions to the Theory of Statistics, 4, 547–562.
- R Core Team, (2024). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.
- Sathishkumar, K., Chaturvedi, M., Das, P., Stephen, S., and Mathur, P. (2022). Cancer incidence estimates for 2022 & projection for 2025: result from National Cancer Registry Programme, India. Indian Journal of Medical Research, Medknow, 156(4& 5), 598–607.
- Shaw, W. T. and Buckley, I. R. (2009). The alchemy of probability distributions: beyond Gram Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. arXiv preprint arXiv:0901.0434.
- Singh, S. K., Singh, U., and Yadav, A. S. (2014). Parameter estimation in Marshall-Olkin exponential distribution under type-I hybrid censoring scheme. Journal of Statistics Applications & Probability, 3, 117–127.
- Verma, E., Singh, S. K., and Yadav, S. (2025). A new generalized class of Kavya–Manoharan distributions: inferences and applications. Life Cycle Reliability and Safety Engineering, 14, 462 79–91.
|