-
- Adams, T., Nolen, S., Sweezy, J., Zukaitis, A., Campbell, J., Goorley, T., ... & Aulwes, R. (2015). Monte Carlo application toolkit (MCATK). Annals of Nuclear Energy, 82, 41-47. https://doi.org/10.1016/j.anucene.2014.08.047
- Ball, D., Upcroft, B., Wyeth, G., Corke, P., English, A., Ross, P., ... & Bate, A. (2016). Vision‐based obstacle detection and navigation for an agricultural robot. Journal of Field Robotics, 33(8), 1107-1130. https://doi.org/10.1002/rob.21644
- Behley, J., Steinhage, V., & Cremers, A. B. (2012, May). Performance of histogram descriptors for the classification of 3D laser range data in urban environments. In 2012 IEEE international conference on robotics and automation (pp. 4391-4398). IEEE. https://doi.org/10.1109/icra.2012.6225003
- Chidambaranathan, C. M., Handa, S. S., Ramanamurthy, M. V., & Ramanamurthy, M. V. (2018). Development of smart farming-a detailed study. International Journal of Engineering & Technology, 7(2.4), 56. https://doi.org/10.14419/ijet.v7i2.4.10042
- Dharmaraj, V., & Vijayanand, C. (2018). Artificial intelligence (AI) in agriculture. International Journal of Current Microbiology and Applied Sciences, 7(12), 2122-2128. https://doi.org/10.20546/ijcmas.2018.712.241
- Doosti-Irani, O., Golzarian, M. R., & Aghkhani, M. H. (2023). Automatic recognition of sweet peppers based on the fast point features histogram (FPFH) 3-D descriptor and machine learning. Journal of Researches in Mechanics of Agricultural Machinery, 12(1), 27-40. https://doi.org/22034/jrmam.2023.13863.587
- Fu, L., Majeed, Y., Zhang, X., Karkee, M., & Zhang, Q. (2020). Faster R–CNN–based apple detection in dense-foliage fruiting-wall trees using RGB and depth features for robotic harvesting. Biosystems Engineering, 197, 245-256. https://doi.org/10.1016/j.biosystemseng.2020.07.007
- Gan, H., Lee, W. S., Alchanatis, V., Ehsani, R., & Schueller, J. K. (2018). Immature green citrus fruit detection using color and thermal images. Computers and Electronics in Agriculture, 152, 117-125. https://doi.org/10.1016/j.compag.2018.07.011
- Gongal, A., Amatya, S., Karkee, M., Zhang, Q., & Lewis, K. (2015). Sensors and systems for fruit detection and localization: A review. Computers and Electronics in Agriculture, 116, 8-19. https://doi.org/10.1016/j.compag.2015.05.021
- Gongal, A., Silwal, A., Amatya, S., Karkee, M., Zhang, Q., & Lewis, K. (2016). Apple crop-load estimation with over-the-row machine vision system. Computers and Electronics in Agriculture, 120, 26-35. https://doi.org/10.1016/j.compag.2015.10.022
- Han, X. F., Sun, S. J., Song, X. Y., & Xiao, G. Q. (2018). 3D point cloud descriptors in hand-crafted and deep learning age: State-of-the-art. arXiv preprint arXiv:1802.02297. https://doi.org/10.48550/arXiv.1802.02297
- Hemming, J., Bac, C. W., & Van Tuijl, B. A. J. (2011). CROPS project deliverable 5.1: Report with design objectives and requirements for sweet-pepper harvesting. Wageningen, The Netherlands: Wageningen UR Greenhouse Horticulture.
- Javidan, S. M., Banakar, A., Vakilian, K. A., & Ampatzidis, Y. (2023). Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agricultural Technology, 3, 100081. https://doi.org/10.1016/j.atech.2022.100081
- Kurtulmus, F., Lee, W. S., & Vardar, A. (2014). Immature peach detection in colour images acquired in natural illumination conditions using statistical classifiers and neural network. Precision Agriculture, 57-79. https://doi.org/10.1007/s11119-013-9323-8
- Lachat, E., Macher, H., Mittet, M. A., Landes, T., & Grussenmeyer, P. (2015). First experiences with kinect v2 sensor for close range 3d modelling. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. https://org/10.5194/isprsarchives-XL-5-W4-93-2015
- Moghimi, A., Aghkhani, M. H., & Golzarian, M. R. (2015). Desigining of Computer Vision Algorithm to Detect Sweet Pepper for Robotic Harvesting Under Natural Light. Journal of Agricultural Machinery, 5(1), 82-91. https://doi.org/10.22067/jam.v5i1.23528
- Mohamadzamani, D., Javidan, S. M., Zand, M., & Rasouli, M. (2023). Detection of Cucumber Fruit on Plant Image Using Artificial Neural Network. Journal of Agricultural Machinery, 13(1), 27-39. https://doi.org/10.22067/jam.2022.73827.1077
- Mohammadi, P., Massah, J., & Asefpour Vakilian, K. (2023). Robotic date fruit harvesting using machine vision and a 5‐DOF manipulator. Journal of Field Robotics. https://doi.org/10.1002/rob.22184
- Muja, M., Rusu, R. B., Bradski, G., & Lowe, D. G. (2011, May). Rein-a fast, robust, scalable recognition infrastructure. In 2011 IEEE international conference on robotics and automation (pp. 2939-2946). IEEE. https://doi.org/10.1109/icra.2011.5980153
- Nan, Y., Zhang, H., Zeng, Y., Zheng, J., & Ge, Y. (2023). Faster and accurate green pepper detection using NSGA-II-based pruned YOLOv5l in the field environment. Computers and Electronics in Agriculture, 205, 107563. https://doi.org/10.1016/j.compag.2022.107563
- Nguyen, T. T., Vandevoorde, K., Kayacan, E., De Baerdemaeker, J., & Saeys, W. (2014, July). Apple detection algorithm for robotic harvesting using a RGB-D camera. In International Conference of Agricultural Engineering, Zurich, Switzerland.
- Ning, Z., Luo, L., Ding, X., Dong, Z., Yang, B., Cai, J., ... & Lu, Q. (2022). Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards. Computers and Electronics in Agriculture, 196, 106878. https://doi.org/10.1016/j.compag.2022.106878
- Ringdahl, O., Kurtser, P., & Edan, Y. (2019). Evaluation of approach strategies for harvesting robots: Case study of sweet pepper harvesting: Category:(5). Journal of Intelligent & Robotic Systems, 95(1), 149-164. https://doi.org/10.1007/s10846-018-0892-7
- Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7
- Rusu, R. B., & Cousins, S. (2011, May). 3d is here: Point cloud library (pcl). In 2011 IEEE international conference on robotics and automation (pp. 1-4). IEEE. https://doi.org/10.1109/icra.2011.5980567
- Rusu, R. B., Blodow, N., & Beetz, M. (2009, May). Fast point feature histograms (FPFH) for 3D registration. In 2009 IEEE international conference on robotics and automation (pp. 3212-3217). IEEE. https://doi.org/10.1109/robot.2009.5152473
- Rusu, R. B., Marton, Z. C., Blodow, N., & Beetz, M. (2008, July). Persistent point feature histograms for 3D point clouds. In Proc 10th Int Conf Intel Autonomous Syst (IAS-10), Baden-Baden, Germany (pp. 119-128). https://doi.org/10.3233/978-1-58603-887-8-119
- Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). Deepfruits: A fruit detection system using deep neural networks. Sensors, 16(8), 1222. https://doi.org/10.3390/s16081222
- Sa, I., Lehnert, C., English, A., McCool, C., Dayoub, F., Upcroft, B., & Perez, T. (2017). Peduncle detection of sweet pepper for autonomous crop harvesting—combined color and 3-D information. IEEE Robotics and Automation Letters, 2(2), 765-772. https://doi.org/1109/LRA.2017.2651952
- Shamshiri, R. R., Hameed, I. A., Karkee, M., & Weltzien, C. (2018). Robotic harvesting of fruiting vegetables: A simulation approach in V-REP, ROS and MATLAB. Proceedings in Automation in Agriculture-Securing Food Supplies for Future Generations, 126, 81-105. https://doi.org/5772/intechopen.73861
- Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221-248. https://doi.org/10.1146/annurev-bioeng-071516-044442
- Stein, M., Bargoti, S., & Underwood, J. (2016). Image based mango fruit detection, localisation and yield estimation using multiple view geometry. Sensors, 16(11), 1915. https://doi.org/10.3390/s16111915
- Tang, Y., Chen, M., Wang, C., Luo, L., Li, J., Lian, G., & Zou, X. (2020). Recognition and localization methods for vision-based fruit picking robots: A review. Frontiers in Plant Science, 11, 510. https://doi.org/10.3389/fpls.2020.00510
- Tao, Y., & Zhou, J. (2017). Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking. Computers and Electronics in Agriculture, 142, 388-396. https://doi.org/10.1016/j.compag.2017.09.019
- Wan, Y., Li, Y., Jiang, J., & Xu, B. (2020, March). Edge Voxel Erosion for Noise Removal in 3D Point Clouds Collected by Kinect. In Proceedings of the 2020 2nd International Conference on Image, Video and Signal Processing (pp. 59-63). https://doi.org/10.1145/3388818.3388821
- Zhao, X., Li, H., Zhu, Q., Huang, M., Guo, Y., & Qin, J. (2020). Automatic sweet pepper detection based on point cloud images using subtractive clustering. International Journal of Agricultural and Biological Engineering, 13(3), 154-160. https://doi.org/10.25165/j.ijabe.20201303.5460
|