1. M. Abareshi, M. Zaferanieh, A bilevel capacitated P-median facility location problem with the most likely allocation solution, Trans. Res. B-Meth. 123 (2019) 1–20.
2. Abo-Sinna, M.A. andRizk-Allah, R.M. Decomposition of parametric space for biobjective optimization problem using neural network approach, Opsearch, 55(2) (2018) 502–531.
3. Ahuja, R.,Magnanti, T.L. and Orlin, J.Network flows: Theory, algorithms, and applications. Prentice Hall, Englewood Cliffs, 1993.
4. Arbel, A. Multi-objective interior primal-dual linear programming algorithm, Comput. Oper. Res. 21 (1994) 33–445.
5. Bazaraa, M.S., Jarvis, J.J. and Sherali, H.D. Linear programming and network flows, third edition. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2005.
6. Benson, H.P. and Sun, E. Outcome space partition of the weight set in multi-objective linear programming, J. Optimiz. Theory App. 105 (2000) 17–36.
7. Calvete, H.I., Gal´eb, C., Iranzo, J.A. and Toth, P. A matheuristic for the two-stage fixed-charge transportation problem, Comput. Oper. Res. 95 (2018) 113–122.
8. Ehrgott, M. and Puerto, J. Primal-Dual simplex method for multi-objective linear programming, J. Optimiz. Theory App. 134 (2007) 483–497.
9. Ehrgott, M., Shao, L. and Sch¨obel, A. An approximation algorithm for convex multi-objective programming problems, J. Global Optim. 50 (2011) 397–416.
10. Eus´ebio, A. and Figueira, J.R. Finding nondominated solutions in biobjective integer network flow problems, Comput. Oper. Res. 36 (2009) 2554–2564.
11. Eus´ebio, A., Figueira, J.R. and Ehrgott, M. A primal-dual simplex algorithm for bi-objective network flow problems, 4OR J. Oper. Res. 7 (2009) 255–273.
12. Eus´ebio, A., Figueira, J.R. and Ehrgott, M. On finding representative nondominated points for biobjective integer network flow problems, Comput. Oper. Res. 48 (2014) 1–10.
13. Guisewite, G. and Pardalos, P. Minimum concave-cost network flow problems: Applications, complexity, and algorithms, Ann. Oper. Res. 25 (1990) 75–99.
14. Hamacher, H.W., Pedersen, C.R. and Ruzika, S. Multiple objective minimum cost flow problems: a review, European J. Oper. Res. 176 (2007) 1404–1422.
15. Hochbaum, D.S. and Segev, A. Analysis of a flow problem with fixed charges, Networks, 19 (1989) 291–312.
16. Keshavarz, E. and Toloo, M. A biobjective minimum cost-time network flow problem, Procedia Econ. Finance. 23 (2015) 3–8.
17. Mohammadi, S., PourKarimi, L. and Pedram, H. Integer linear programming based multi-objective scheduling for scientific workflows in multi cloud environments, J. Supercomput. 75 (2019) 6683–6709.
18. Moradi, S., Raith, A. and Ehrgott, M. A biobjective column generation algorithm for the multi-commodity minimum cost flow problem, European J. Oper. Res. 244 (2015) 369–378.
19. Mungu´ıa, L., Ahmed, S.,Bader, D.A., Nemhauser, G.L., Goel, V. and Shao, Y. A parallel local search framework for the fixed charge multicommodity network flow problem, Comput. Oper. Res. 77 (2017) 44–57.
20. Nicholson, C.D. and Zhang, W. Optimal network flow: A predictive analytics perspective on the fixed-charge network flow problem, Comput. Ind. Eng. 99 (2016) 260–268.
21. Ortega, F. and Wolsey, L. A branch-and-cut algorithm for the single commodity, uncapacitated, fixed-charge network flow problem, Networks, 41 (2003) 143–158.
22. Przybylski, A. Application of primal-dual simplex method for MOLP to the MO assignment problem, Technical Report, University of Nantes, Nantes, France, 2005.
23. Przybylski, A., Gandibleux, X. and Ehrgott, M. The two-phase method for multi-objective combinatorial optimization problems, In A. R. Mahjoub (Ed.), Progress in combinatorial optimization (pp. 559–596), London, IS
TEWiley, 2011.
24. Raith, A. and Ehrgott, M. A two-phase algorithm for the biobjective integer minimum cost flow problem, Comput. Oper. Res. 36 (2009) 1945–1954.
25. Sede˜no-Noda, A. and Gonzalez-Martin, C. The biobjective minimum cost flow problem, European J. Oper. Res. 124 (2000) 591–600.
26. Steuer, R.E. Multiple Criteria Optimization: Theory, Computation, and Application, Wiley, New York, 1986.