Abolghasemi fakhri, L., Ghanbarzadeh, B., Dehghannia, J. & Entezami, A.A., 2012, The Effects of Montmorillonite and Cellulose Nanocrystals on Physical Properties of Carboxymethyl Cellulose/Polyvinyl Alcohol Blend Films. Iranian Journal of Polymer Science and Technology, 24(6), 455-466.
Ahola, S., Salmi, J., Johansson, L.S., Laine, J. & Österberg, M., 2008, Model films from native cellulose nanofibrils; preparation, swelling, and surface interactions. Biomacromolecules, 9, 1273-1282.
Almasi, H., Ghanbarzadeh, B. & Entezami, A.A., 2010, Physicochemical properties of starch-CMC-nanoclay biodegradable films. International Journal of Biological Macromolecules, 46, 1-5.
ASTM. 1995. Standard test methods for water vapor transmission of material. E96-95. Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
Ayranci, E. & Tunc, S., 2001, The effect of fatty acid content on water vapor and carbon dioxide transmissions of cellulose-based edible films. Food Chemistry, 72, 231-236.
Bondeson, D. & Oksman, K., 2007, Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alchol. Composites part A: Applied Science and Manufacturing, 38(12), 2486-2492.
Casariego, A., Souza, B.W.S., Cerqueira, M.A., Teixeira, J.A., Cruz, L., Diaz, R. & Vicente, A.A., 2009, Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, in press paper.
Chen, L., Imam, S.H., Gordon, S.H. & Greene, R.V., 1997, Starch- polyvinyl alcohol crosslinked film- performance and biodegradation. Journal of Environmental Polymer Degradation, 5(2), 111-117.
Cho, M.S., Choi, S.H., Nam, J.D. & Lee, Y., 2004. Preparation and mechanical properties of nanocomposite of cellulose diacetate/mentmorillonite. Polymer (Korea), 28, 551-555.
Choi, Y. & Simonsen, J., 2006, Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. Journal of Nanoscience and Nanotechnology, 6(3), 633-639.
Cyras, V.P., Manfredi, L.B., Ton, T.M. & Vazquez, A., 2008, Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Journal of Carbohydrate Polymers, 73, 55-63.
Dean, K.M., Do, M.D., Petinakis, E. & Yu, L., 2008, Key interactions in biodegradable thermoplastic starch/poly (vinyl alcohol)/montmorillonite micro- and nanocomposites. Composites Science and Technology, 68, 1453-1462.
Debeaufort, F. & Voilley, A., 1997, Carboxymethylcellulose-based edible films and coatings: 2. Mechanical and thermal properties as a function of plasticizer content. Journal of Food Engineering, 61, 459-466.
Delhom, C.D., White-ghoorahoo, L.A. & Pang, S.S., 2009, Development and characterization of cellulose/clay nanocomposites. Composites: Part B, xxx-xxx.
Flieger, M., Kantorova, M., Prell, A., Rezanka, T. & Votruba, J., 2003, Biodegradable plastics from renewable sources. Folia Microbiologica, 48(1), 27-44.
Follain, N., Joly, C., Dole, P. & Bliard, C., 2005, Properties of starch based blends. Part 2. Influence of poly vinyl alcohol addition and photocrosslinking on starch based materials mechanical properties. Carbohydrate Polymers, 60,185-192.
Ghanbarzadeh, B., Oromiehi, A.R. & Razmi Rad, E., 2008, Studies on glass transition temperature of mono and bilayer Protein Films plasticized by glycerol and olive oil. Journal of Applied Polymer, 109(5), 2848-2854.
Ganbarzadeh, B., Almasi, H. & Entezami, A.A., 2010, Physical properties of edible modified starch / carboxymethyl cellulose films. Innovative Food Science and Emerging Technologies, 1-30.
Ghanbarzadeh, B. & Almasi, H., 2011, Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules, 48, 44-49.
Gontard, N. & Guilbert, S., 1994a, Biopackaging; food packaging and preservation, Blackie Academic and Professional, London.
Gontard, N. & Guilbert, S., 1994b, Biopackaging: technology and properties of edible and/or biodegradable material of agricultural origin. In: Mathlouthi, M. ed. Food packaging and preservation. Blackie Academic and Professional. London.
Gupta, R.K. & Bhattacharya, S.N., 2008, Polymer-clay nanocomposites: current status and challenges. Indian Institute of Chemical Engineers, 50(3), 242-267.
Huang, M. & Yu, J., 2006, Structure and properties of thermoplastic corn starch/clay nanocomposites. Journal of Applied Polymer Science, 99, 170-176.
Lu, Ch. & Mai, Y.W., 2007, Permeability modeling of polymer-layered silicate nanocomposites. Composite Science and Technology, 67, 2895-2902.
Mao, L., Imam, S., Gordon, S., Cinelli, P. & Chiellini, E., 2000, Extruded cornstarch- glycerol-polyvinyl alcohol blends: Mechanical properties, morphology, and biodegradability. Journal of Polymers and Environment, 8(4), 205-211.
Mc Glashan, S.A. & Halley, P.J., 2003, Preparation and characterization of biodegradable starch-based nanocomposite materials. Polymer International, 52, 1767-1773.
Mohanty, A.K., Misra, M. & Hinrichsen, G., 2000, Biofibres, biodegradable polymer and composites: An overview. Journal of Macromolecular Materials and Engineering, 276/277, 1–24.
Morgan, A.B. & Gilman, J.W., 2003, Characterization of poly-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. Journal of Applied Polymer Science, 87, 1329- 1338.
Otey, F., Mark, A., Mehltretter, C. & Russell, C., 1974, Starch-based film for degradable agricultural mulch. Industrial and Engineering Chemistry Product Research and Development, 13, 90-95.
Park, H.J., Weller, C.L., Vergano, P.J. & Testin, R.F., 1993, Permeability and mechanical properties of cellulose based edible films. Journal of Food Science, 58(6), 1361-1364.
Park, H.M., Li, X., Un, C.Z., Park, C.Y., Cho, W.J. & Ha, C.S., 2002, Preparation and properties of biodegradable thermoplastic starch/clayhybrids. Macromolecule Materials and Engineering, 287, 553-558.
Park, H.M., Lee, W.K., Park, C.Y., Cho, W.J. & Ha, C.S., 2003, Environmentally friendly polymer hybrids. 1. Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. Journal of Material Science, 38, 909-915.
Park, H.M., Liang, X., Mohanty, A.K., Misra, M. & Drzal, L.T., 2004, Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules, 37, 9076-9082.
Rhim, J.W., & Perry, K.W.N., 2007, Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47, 411-433.
Simon, J., Muller, H.P., Koch, R. & Muller, V., 1998, Thermoplastic and biodegradable polymers of cellulose. Polymer Degradation and Stability, 59, 107-115.
Sorrentino, A., Gorrasi, G. & Vittoria, V., 2007, Potential perspectives of bionanocomposites for food packaging applications. Trends in Food Science and Technology, 18, 84-95.
Tang, X., 2008, Use of extrusion for synthesis of starch-clay nanocomposites for biodegradable packaging films. PhD thesis, Food science institute, College of agriculture, Kansas state university.
Tunc, S., Angellier, H., Cahyana, Y., Chalier, P., Gontard, N. & Gastaldi, E., 2007, Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. Journal of Membrane Science, 289, 159-168.
Vaia, R.A. & Giannelis, E.P., 2001, Liquid crystal polymer nanocomposites: direct intercalation of thermotropic liquid crystalline polymers into layered silicates. Polymer, 42, 1281-1285.
Wang, Y., Rakotonirainy, A.M. & Padua, G.W., 2003, Thermal behavior of zein-based biodegradable films. Starch, 32, 25-29.
Wilhelm, H.M., Sierakowski, M.R., Souza, G.P. & Wypych, F., 2003, Starch films reinforced with mineral clay. Carbohydrate Polymer, 52, 101-110.
Xu, Y., Zhou, J. & Hanna, M.A., 2005, Melt-intercalation starch acetate nanocomposite forms as affected by type of organoclay. Cereal Chemical, 82, 105-110.
Yano, K., Usuki, A. & Okada, A.J., 1997, Synthesis and properties of polyimideclay hybrid films. Polymer Science, 35, 89-94.
Zhiqiang, L., Yi, F. & Xiao-su, Y., 1999, Thermoplastic starch/pval compounds: preparation, processing, and properties. Journal of Applied Polymer Science, 74, 2667-2673.