الماسی، ه.، قنبرزاده، ب.، و پزشکی نجف آبادی، ا. (1389). بهبود ویژگیهای فیزیکی فیلمهای زیست تخریب پذیر نشاسته و فیلمهای مرکب نشاسته و کربوکسی متیل سلولز. فصلنامه علوم و صنایع غذایی، (6)3، 11-1.
پروین زاده گشتی، م.، مرادیان، س. رشیدی، ا. و یزدانشناس، م. (1391). اثر نوع نانوسیلیس بر خواص نانوکامپوزیت پلی اتیلن ترفتالات- سیلیس. مجله علوم و تکنولوژی پلیمر، (3)25، 219-203
Alipour, A., Naderi, G., & Bakhshandeh, G. (2011). "Elastomer Nanocomposites Based on NR/ EPDM/ Organoclay: Morphology and Properties. Int.Polym. Proc, 26, 48-55.
Giraldi, A., Bizarria, M., Silva, A., Velasco, J., d’A´ vila, M., & Mei, L. (2008). Effects of Extrusion Conditions on the Properties of Recycled Poly(Ethylene Terephthalate)/Nanoclay Nanocomposites Prepared by a Twin-Screw Extruder. Journal of Applied Polymer Science, 108, 2252–2259 .
Parvinzadeh, M., Moradian, S., Rashidi, A., & Yazdanshenas, M.-E. (2010). Effect of the Addition of Modified Nanoclays on the Surface Properties of the Resultant Polyethylene Terephthalate/Clay nanocomposites. Polymer-Plastics Technology and Engineering, 49, 874–884.
Ammala, A., Ammala, C., & Dean, K. (2008). Poly(ethylene terephthalate) clay nanocomposites: Improved dispersion based on an aqueous ionomer. Compos. Sci. Technol., 68, 1328–1337.
Bandyopadhyay, J., & Ray, S. (2012). Clay-containing poly(ethylene terephthalate) PET-based polymer nanocomposites. woodhead publishing limited.
Barber, G., Calhoun, B., & Moore, R. (2005). Poly(ethylene terephtha-late) ionomer based clay nanocomposites produced via melt extrusion. Polymer, 46, 6706–6714.
Bikiaris, D., Karavelidis, V., & Karayannidis, G. (2006). A New approach to prepare poly(ethylene terephthalate)=silica nanocomposites with increased molecular weight and fully adjustable branching or cross-linking by SSP. Macromol. Rapid Commun, 27, 1199–1205.
Brezinski, D. (1991). An Infrared Spectroscopy Atlas for the Coatings Industry. Pennsylvania: Federation of Societies for Coating Technology.
Calcagno , C., Mariani , C., Teixeira, S., & Mauler, R. (2007). The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer , 48 , 966-974.
Casariego, A., Souza, B., Cerqueira, M., Teixeira, J., Cruz, L., Diaz, R., & Vicente, A. (2009). Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, 23(7), 1631-2030.
Dardmeh, N., Khosrowshahi, A., Almasi, H., & Zandi, M. (2017). Study on effect of the polyethylene terephthalate /nanoclay nanocomposite film on the migration of . Journal of Food Process Engineering, 40(1), 1-9.
Fischer , H., Gielgens, L. H., & and Koster, T. (1999). Nanocomposites from Polymers and Layered Minerals. Acta Polym, 50, 122-126.
Ghanbari, A., Heuzey, M. C., Carreau, P. J., & Ton-That, M. T. (2013). Morphological and rheological properties of PET/clay nanocomposites. Rheol Acta, 52, 59-74.
Guillard , V., Chevillard, A., Gastaldi, E., Gontard, N., & Angellier-Coussy, H. (2013). Water transport mechanisms in wheat gluten based (nano)composite materials. European Polymer Journal, 49, 1337–1346.
Hongping, H., Ray , F., & Jianxi, Z. (2004). Infrared study of HDTMA+ intercalated montmo- rillonite, Spectrochim. 60, 2853–2859.
Kim, K., Kim, K. H., Huh, J., & Jo, W. H. (2007). Synthesis of Thermally Stable Organosilicate for Exfoliated Poly(ethylene terephthalate) Nanocomposite with Superior Tensile Properties. Macromolecular Research, 15(2), 178-184.
Kim, S.-g. (2007). PET nanocomposites development with nanoscale materials. Toledo university.
Kračalik, M., Mikešova, J., Puf, R., Baldrian, J., Thomann, R., & Friedrich, C. (2007). Effect of 3D structures on recycled PET/organoclay nanocomposites. Polymer Bulletin, 58, 313–319.
Laia, M., Chang, K., Huang, W., Hsua, S., & Yeha, J. (2008). Effect of swelling agent on the physical properties of PET–clay nanocomposite materials prepared from melt intercalation approach. J. Phys. Chem. Solids, 69, 1371–1374.
Material, S. T. (1995). E96-95. Annual Book of ASTM, Philadelphia, American Society for Testing and Materials, .
Park, H., Li, X., Un, C., Park, C., & Cho, W. (2002). Preparation and properties of biodegradable thermoplastic starch/clayhybrids. Macromolecule Materials and Engineering, 287, 553-558.
Parvinzadeh Gasht, M., & Moradian, S. (2012). Effect of Nanoclay Type on Dyeability of Polyethylene Terephthalate/Clay Nanocomposites. Journal of Applied Polymer Science, 125, 4109–4120.
Pavlidoua, s., & Papaspyridesb, C. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33, 1119-1198.
Pisano, C., & Figiel, Ł. (2013). Modelling of morphology evolution and macroscopic behaviour of intercalated PET–clay nanocomposites during semi-solid state processing. Composites Science and Technology, 75, 35–41.
Scaffaro, R., Botta, L., Ceraulo, M., & La Mantia, F. P. (2011). Effect of Kind and Content of Organo-Modified Clay on Properties of PET Nanocomposites. Journal of Applied Polymer Science, 122, 384–392 .
Tang, X. (2008). Use of extrusion for synthesis of starch-clay nanocomposites for biodegradable packaging films. PhD thesis, Food science institute, College of agriculture, Kansas state university.
Veiga Barbosa, C., & Machado Viana, J. (2010). Nano- and Multiscale Polymer Composites. Universidade do Minho TECNA SOE1/P1/E184.
Zúniga, R., Skurtys, O., Osorio, F., Aguilera, J., & Pedreschi, F. (2012). Physical properties of emulsion-based hydroxypropyl methylcellulose films:Effect of their microstructure. Carbohydrate Polymers, 90, 1147–1158