تعداد نشریات | 49 |
تعداد شمارهها | 1,847 |
تعداد مقالات | 19,539 |
تعداد مشاهده مقاله | 9,340,642 |
تعداد دریافت فایل اصل مقاله | 6,572,810 |
تولید و بهینهسازی ویژگیهای نانوکامپوزیت زیستتخریبپذیر کیتوزان /نانوفیبرآلی حاوی اسانسهای مرزنجوش بخارایی و زنیان و کاربرد آن بر پایداری اکسیداتیو روغن کلزا | ||
نشریه پژوهشهای علوم و صنایع غذایی ایران | ||
مقاله 17، دوره 14، شماره 5 - شماره پیاپی 53، آذر و دی 1397، صفحه 907-927 اصل مقاله (853.63 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/ifstrj.v14i5.71229 | ||
نویسندگان | ||
عیسی جاهد* ؛ هادی الماسی؛ محمد علیزاده خالد آباد | ||
گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران. | ||
چکیده | ||
در پژوهش حاضر به طراحی و تولید یک بسته بندی فعال آنتیاکسیدانی/ ضدمیکروبی بر پایه بیوپلیمر کیتوزان پرداخته شد که در آن از نانوفیبرلیگنوسلولز (LCNF) و نانوفیبرسلولز (CNF) در غلظت 4% بهعنوان تقویتکننده ویژگیهای بیوپلیمر و همچنین بهمنظور کنترل رهایش ترکیبات اسانس مرزنجوش و زنیان در غلظت 5% (بهعنوان ماده آنتیاکسیدان/ ضدمیکروبی) از ماده بستهبندی به داخل ماده غذایی، استفاده شد. نتایج نشان داد افزودن اسانسها بهصورت ترکیبی تاثیر قابل توجهی بر تغییرات بلورینگی و خواص حرارتی فیلمها نداشت، در حالیکه نانوتقویتکنندههای آلی سبب افزایش خاصیت کریستالی و افزایش مقاومت حرارتی فیلمهای نانوکامپوزیت گردید. با بهکار بردن اسانس و نانوتقویتکنندههای CNF و LCNF در ساختار فیلمها، شفافیت و در نتیجه میزان عبور نور از فیلمهای فعال نسبت به نمونه کنترل کاهش یافت. افزودن اسانسها بهطور جداگانه و ترکیبی و همچنین نانوتقویتکنندههای آلی در ساختار فیلمها، سبب کاهش معنیداری در میزان حلالیت و نفوذپذیری کامپوزیتها نسبت به فیلم خالص کیتوزان گردید. با افزودن حالت ترکیبی دو اسانس با نسبت 50:50، استحکام کششی (UTS) و کرنش تا نقطه شکست (STB) افزایش یافت، در حالیکه نانوفیبرهای آلی منجر به افزایش UTS و کاهش قابل توجهی در مقدار STB نانوکامپوزیتها گردید. همچنین مشخص شد که فیلمهای فعال حاوی نسبتهای مختلف اسانس دارای فعالیت آنتیاکسیدانی قابل توجهی بوده و خاصیت ضدمیکروبی بالایی علیه باکتریهای اشریشیاکلی O157:H و باسیلوس سرئوس داشتند که با افزودن CNF و LCNF بهدلیل نقش کنترلکنندگی توسط نانوفیبرها، از این ویژگیهاکاسته شد. با بهینهسازی عددی نرم افزار، مقدار بهینه برای اسانس های زنیان و مرزنجوش بهترتیب 29/2 و 71/2 درصد (مخلوط 5%) در ترکیب با نانوتقویتکننده LCNF بهدست آمد. نتایج پایداری اکسایشی روغن کلزا نشان داد که نانوکامپوزیت بهینه و کامپوزیت فعال آن، بهطور قابل توجهی قادر بودند تازگی روغن را در طول نگهداری در دمای محیط حفظ کنند و اکسیداسیواسیون روغن را به تاخیر اندازند. | ||
کلیدواژهها | ||
نانوکامپوزیت؛ زنیان؛ مرزنجوش؛ روغن کلزا؛ نانوفیبرلیگنوسلولز | ||
مراجع | ||
بقایی، ه.، آقایی، ف.، صداقت، ن.، محبی، م.، 1391، بررسی اثر افزودن اسانس سیر بر ویژگی های فیزیکی-مکانیکی، میکروبی و حسی فیلم خوراکی تهیه شده از ایزوله پروتیئن سویا. نشریه پژوهش های علوم و صنایع غذایی ایران، جلد 8، شماره 3؛ 287-279.
دهناد، د.، میرزایی، ح.، امام جمعه، ز.، جعفری، س. م.، داداشی، س، 1392، بررسی ویژگیهای حرارتی و ضدمیکربی نانوکامپوزیتهای کیتوزان- نانوسلولز و تأثیر آن در افزایش مدت ماندگاری گوشت چرخکرده. مجله علوم تغذیه و صنایع غذایی ایران، سال هشتم، شماره 4؛ 173-163.
Abdollahi, M., Rezaei, M., Farzi, G., 2012, Improvement of active chitosan film properties with rosemary essential oil for food packaging. International Journal of Food Science and Technology, 47, 847-853.
Abdul Khalil, H.P.S., Bhat, A.H., and Ireana Yusra, A.F., 2012, Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers. 87, 963-979.
Alboofetileh, M., Rezaei, M., Hosseini, H., & Abdollahi, M., 2014, Antimicrobialactivity of alginate/clay nanocomposite films enriched with essential oilsagainst three common foodborne pathogens. Food Control, 36, 1–7.
Almasi, H., Ghanbarzadeh, B., Dehghannya, J., Entezami, A., & Khosrowshahi Asl, A., 2014, Development of a novel controlled-release nanocomposite based onpoly(lactic acid) to increase the oxidative stability of soybean oil. Food Additives & Contaminants: Part A, 31(9), 1586–1597.
Almasi, H., Zandi, M., Beigzadeh, S., Haghju, S., Mehrnow, N., 2016, Chitosan films incorporated with nettle (Urtica Dioica L.) extract-loaded nanoliposomes: II. Antioxidant activity and release properties. Journal of microencapsulation, 1-11.
ASTM. 2010, Annual book of ASTM standards. Pennsylvania: American Society forTesting and Materials.
Atares, L., De Jesús, C., Talens, P., & Chiralt, A., 2010, Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of food engineering, 99, 384-391.
Azeredo, H.M.C., Mattoso, L. H. C., Wood, D., Williams, T. G., Avena-Bustillos, R. J., McHugh T. H. 2010. Nanocellulose Reinforced Chitosan Composite Films as Affected by Nanofiller Loading and Plasticizer Content. Journal of Food Science, 75: 1–7.
Ballner, D., Herzele, S., Keckes, J., Edler, M., Griesser, T., Saake, B., 2016, Lignocellulose nanofiber-reinforced polystyrene produced from composite microspheres obtained in suspension polymerization shows superior mechanical performance. ACS Applied Materials and Interfaces, 8(21), 13520–13525.
Beikzadeh Ghelejlu, S., Esmaiili, M., Almasi, H., 2016, Characterization of chitosan–nanoclay bionanocomposite active films containing milk thistle extract. International Journal ofBiological Macromolecules. 86, 613–621.
Burt, S. 2004. Essential oils: their antibacterial properties and potentialapplications in foodsda review. International Journal of Food Microbiology,94(3), 223–253.
Byun, Y., Kim, Y.T., and Whiteside, S., 2010, Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. Journal of Food Engineering. 100, 239-244.
Celebi, H., Kurt A., 2015, Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydrate polymers, 20(133); 284-293.
Chang, P. R., Jian, R., Yu, J., & Ma, X., 2010, Starch-based composites reinforcedwith novel chitin nanoparticles. Carbohydrate Polymers, 80, 420–425.
Cherian, B. M., Leao, A. L., de Souza, S. F., Costa, L. M. M., de Olyveira, G. M., and Kottaisamy, M., 2011, Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers. 86(4), 1790–1798.
Dashipour, A., Khaksar, R., Hosseini, H., Shojaee-Aliabadi, S., Ghanati, K., 2014, Physical, antioxidant and antimicrobial characteristics of carboxymethyl cellulose edible film cooperated with clove essential oil. Zahedan Journal of Research in Medical Sciences. 16 (8); 34–42.
Dhawade, P. P., Jagtap R. N., 2012, Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry. Advances in Applied Science Research, 3 (3):1372-1382.
Fabra, M.J., Talens P., Chiralt A., 2009, Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures, Food Hydrocolloids. 23 (3); 676–683.
Gemili, S., Yemenicioglu, A., and Altınkaya, S.A. 2010, Development of antioxidant food packaging materials with controlled release properties. Journal of Food Engineering. 96, 325-332.
Genskowsky, E., Puente, L.A., Perez-Alvarez, Fernandez-Lopez J.A., J., Munoz L.A., Viuda-Martos, M., 2015, Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT-Food Science and Technology, 64;1057-1062.
Gomez-Estaca J., Gimnez B., Montero P., Gomez-Guillen M.C., 2009, Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. Journal of Food Engineering. 92, 78–85.
Gomez-Guillen, M. C., Ihl, M., Bifani, V., Silva, A., & Montero, P., 2007, Edible filmsmade from tuna-fish gelatin with antioxidant extracts of two different murtaecotypes leaves (Ugni molinae Turcz). Food Hydrocolloids, 21, 1133–1143.
Goudarzi GR, Saharkhiz MJ, Sattari M, Zomorodian K., 2011, Antibacterial activity and chemical composition of Ajowan (Carum copticum benth. & hook) essential oil. J Med PlantRes;13:203–208.
Hosseini, M., Razavi, S., & Mousavi, M., 2009, Antimicrobial, physical andmechanical properties of chitosan based films incorporated with thyme, cloveand cinnamon essential oils. Journal of Food Processing and Preservation, 33,727–743.
Iwamoto, S., & Endo, T., 2015, 3 nm thick lignocellulose nano fibers obtained from esterified wood with maleic anhydride. ACS Macro Letters, 4(1), 80–83.
Jafari, H., Pirouzifard, M., Alizadeh Khaledabad, M. A., & Almasi, H., 2016, Effect ofchitin nanofiber on the morphological and physical properties ofchitosan/silver nanoparticle bionanocomposite films. International Journal ofBiological Macromolecules, 92, 461–466.
Kalemba D, Kunicka A., 2003, Antibacterial and antifungal properties of essential oils. Curr. Med. Chem; 10: 813 - 29.
Khajeh, M., Yamini, Y., Sefidkon, F., & Bahramifar, N., 2004, Comparison ofessential oil composition of Carum copticum obtained by supercritical carbondioxide extraction and hydrodistillation methods. Food Chemistry, 86, 587–591.
Kumagai, A., Lee, S.-H., & Endo, T., 2016, Evaluation of the effect of hot-compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance. Biotechnology and Bioengineering, 113(7), 1441–1447.
Lopez-Mata, M. A., Ruiz-Cruz, S., & Silva-Beltran, N. P., 2013, Physicochemical:Antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules, 18, 13735–13753.
Moradi, M., Hassani, A., Sefidkon F., Maroofi H., 2015, Chemical composition of leaves and flowers essential oil of Origanum vulgare ssp. gracile growing wild in Iran. Journal of Essential Oil Bearing Plants, 18 (1); 242–247.
Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H., 2010, Development andevaluation of a novel biodegradable film made from chitosan and cinnamonessential oil with low affinity toward water. Food Chemistry, 122, 161–166.
Pereda M., Amica G., Marcovich N.E., 2012, Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers, 87 (2),1318–1325.
Pires, C., Ramos, C., Teixeira, B., Batista, I., Nunes, M.L.A.M., 2013, Hake proteins edible films incorporated with essential oils: physical, mechanical, antioxidant and antibacterial properties. Food Hydrocolloids, 30, 224-31.
Rhim, J., & Ng, P., 2007, Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411-433.
Ruiz-Navajas Y., Viuda-Martos M., Sendra E., Perez-Alvarez J.A., 2013, In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control, 30, 386–392.
Salaberria, A. M., Diaz, R. H., Labidi, J., & Fernandes, S. C., 2015, Preparing valuablerenewable nanocomposite films based exclusively on oceanic biomass - chitinnanofillers and chitosan. Reactive and Functional Polymers, 89, 31–39.
Solikhin, A., Hadi, Y. S., Massijaya, M. Y., & Nikmatin, S., 2017, Novel isolation of empty fruit bunch lignocellulose nanofibers using different vibration milling times-assisted multimechanical stages. Waste and Biomass Valorization, 8 (7); 2451-2462.
Souza, C.O., Silva, L.T., Silva, J.R., Lopez, J.A., Veiga-Santos, P., and Druzian, J. I., 2011, Mango and acerola pulps as antioxidant additives in cassava starch bio-based Film. Journal of Agricultural and Food Chemistry. 59, 2248-2254.
Tang, C., Liu, H., 2008, Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Composites Part A: Applied Science and Manufacturing, 39 (10);1638-1643.
Wang, L., Liu, F., Jiang, Y., Chai, Z., Li, P., & Cheng, Y., 2011, Synergisticantimicrobial activities of natural essential oils with chitosan films. Journal of Agricultural and Food Chemistry, 59, 12411–12419.
Wu, J., Sun, X., Guo, X., Ge, S., Zhang, Q., 2017, Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquaculture and Fisheries, 2(4); 185-192. | ||
آمار تعداد مشاهده مقاله: 315 تعداد دریافت فایل اصل مقاله: 269 |